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TOM TAT

Bai bao dé xuat mo rong hai thuat toan ude lwong kénh LS dua trén mo hinh tin hiéu tensor cho céc hé thong
MIMO duge hd trg boi bé mit phan xa thong minh (IRS). Hai thuat toan nay khai thac cAu truc tensor cua tin hiéu
hoa tiéu dé thiét 1ap bai toan ude luong kénh ghép ting. Thudt toan thir nhit mé rong wéce luong LS dua trén viée
khai thac cau tric Khatri-Rao Factorization (KRF) ctia kénh MIMO ghép ting, bang cach gii cac bai toan con xap
xi ma trén hang 1. Bai toan udc lugng thur hai dua trén thuat toan BALS (Bilinear Alternating Least Squares), day
la phién ban don gian hoa cta thuat toan TALS (Trilinear Alternating Least Squares). Ngoai ra, bai bao nay ciling
trinh bay mdi quan hé gitra cac tham sé kénh MIMO dé cac thuat toan udc lugng trén c6 tinh kha thi. Két qua mo
phong cho thay cac phuong phéap udc lugng LS mé rong dua trén mo hinh tin hiéu tensor da cai thién hidu suét so
v6i woc lugng LS truyén thong.

T khéa: Udc luong kénh, bé mat phan xa thong minh, thudt toan dva trén tensor, Khatri-Rao factorization.
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ABSTRACT

This paper proposes to extend two Least Squares (LS) channel estimation algorithms based on tensor
signal model to MIMO systems supported by Intelligent Reflective Surfaces (IRS). These two algorithms exploit
the tensor structure of the pilot signal to establish the cascaded channel estimation problem. The first algorithm
extends the LS estimation based on exploiting the Khatri-Rao Factorization (KRF) structure of the cascaded
MIMO channel, by solving subproblems approximating the 1-rank matrix. The second estimator is based on the
Bilinear Alternating Least Squares (BALS) algorithm, which is a simplified version of the Trilinear Alternating
Least Squares (TALS) algorithm. In addition, this paper also presents the relationship between the MIMO channel
parameters for the above estimation algorithms to be feasible. The simulation results show that the extended LS
estimation methods based on the tensor signal model have improved performance compared with the conventional
LS estimation.

Keyword: Channel estimation, intelligent reflecting surfaces, tensor-based algorithm, Khatri-Rao factorization.

1. INTRODUCTION MIMO (MU-MIMO), massive MIMO and

Over the past decade, Multiple Input Multiple millimeter wave MIMO, depending on the

Output (MIMO) communication systems have number of user, the number of antennas and the

been extensively studied and considered a key operating frequency bands. MIMO systems can

technology for enhanced mobile broadband be applied in wireless comml.mlcatlon systems,
such as cellular networks, wireless Local Area
Networks (WLANS), vehicle networks, satellite

communications, and radar systems. Some

communications in fifth generation networks
(5G), the future beyond-5G (B5G) and sixth
generation (6G). Several works have thoroughly ) o
investigated both theoretical and practical trends in the application of MIMO systems
include: Internet of Things (IoT) device systems,
MIMO for Unmanned Aerial Vehicles (UAVs)

and MIMO for cognitive radio networks.

solutions on spectral efficiency analysis, data
rate increase, reliability improvement and
interference reduction, etc.'* MIMO systems
can be classified into different types, such as The above mentioned advantages of
Single-User MIMO (SU-MIMO), Multi-User MIMO systems are achieved by the outstanding
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characteristic of channel hardening, i.e. the
characteristic of user channels that do not
fading over time and the favorable propagation
over multipath channel. However, for MIMO
systems, including massive MIMO, there is
an open problem to ensure the performance of
users in service dead zones, for example, indoor
users with thick walls between them and the
Base Station (BS) or outdoor users surrounded
by many tall buildings, where gain is difficult to
compensate for severe channel loss.

In the last few years, a number of studies
have discussed the potentials and challenges of
wireless communications assisted by Intelligent
Reflective Surfaces (IRS).>” Much research has
been done on both the theory and implementation
of IRS application in MIMO communication
systems to maintain performance and increase
user coverage in service dead zones. With
the assistance of the IRS, MIMO systems
can suppress Co-Channel Interference (CCI)
when the user is at the edge of the cell,’ or to
improve physical layer security.!®!! Besides,
IRS can be used for information and power
transfer in a IoT networks.® IRS also known
as reconfigurable smart surface or software
controlled hypersurface consisting of a 2D
array with a large number of passive or semi-
passive elements can control the electromagnetic
characteristics of radio frequency waves so
that the reflected signal adds coherently at the
receiver or cancels it out to reduce CCI.>® Each
element can operate independently and can be
reconfigured in a software-defined manner using
an external controller. The IRS does not require
dedicated Radio Frequency (RF) strings and is
powered wirelessly by an external RF source.
This is in contrast to relay systems that need
amplify-and-forward or decode-and-forward,
and require specialized power sources.’

In MIMO systems, the availability of
Channel State Information (CSI) is a topic
of intense research. Accurate and timely CSI

knowledge plays an important role in wireless
communication systems. For IRS-assisted
MIMO systems, there are often a large number
of IRS elements, which poses a significant
challenge to solving the channel estimation
problem in collecting CSI. In these systems,
there are two basic methods for performing
channel estimation. First, use the IRS with a
semi-passive structure in which several active
elements connected to receive the RF string. In
this case, the parts that actively perform baseband
processing at the IRS facilitate the collection
of CSL"

In the second method, the IRS has a
full passive structure, where the IRS works by
reflecting the impinging waves according some
phase shift pattern. This is a more difficult case,
where at the receiver based on the pilot signals
sent by the transmitter and reflected by the IRS
performs a cascade estimation between the
transmitter to the IRS and the IRS to the receiver.
In this case, the IRS uses a phase shift model in
which the training phases play an important role.
This is the method used in this paper.

A number of published works refer to
different solutions to the channel estimation
problem for the case of passive IRS. T. L. Jensen
et al. have proposed an unbiased estimation
method with minimal variance and an optimal
calculation of the IRS phase shift matrix, in
which the IRS elements are completely passive. '
The authors in the reference,'* propose a two-
stage algorithm by exploiting the sparse code
characteristics of multipath channels with low
rank channel matrices. The cooperative channel
estimation through the training beam of IRS-
assisted massive MIMO systems on the terahertz
channel is presented. IRS was proposed as a
solution to reduce the congestion problem and
also presented the method of channel estimation
on millimeter wave channel.'® The IRS-assisted
MIMO system is considered and channel
estimation is performed by the two-stage
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method and the IRS-supported transmission
route is estimated by the approximate message
transmission method.!” In the study,'® established
the channel estimation based on sparse matrix
factorization of the Internet of Things (IoT)
system supported by the IRS. The latest research
works,"2! successfully applied tensor models in
many signal processing problems, especially for
wireless communication systems. Semi-blind
channel estimation methods for MIMO systems
have also considered,?** channel estimation
methods for cooperative communication,?** and
more recently, estimation methods compressed
channel in massive MIMO systems.?6?

In most of these works, signal processing
is very efficient thanks to the uniqueness of tensor
decomposition to exploit the multidimensional
nature of transmitted/received signals and
communication channels. The parallel factor
(PARAFAC) structure of the tensor model is
very convenient for the estimation problem of
time varying multipath channel parameters by
using pilot signal pattern and IRS phase shift
signals in time domain.?®

In this paper, the tensor model is used
to extend the least squares channel estimation
problem. Instead of solving the cascaded MIMO
channel estimation problem, we propose the
separate MIMO channel estimation problem
between the base station transmitter to the
IRS (BS-IRS) and between the IRS to the User
Terminal (IRS-UT) by exploiting the PARAFAC
structure. Accordingly, we set up two algorithms.
The first algorithm is a closed-form solution
based on the Khatri-Rao factorization (KRF)
of the combination of BS-IRS and IRS-UT
channels. The second algorithm performs an
iterative Bilinear Alternating Least Squares
(BALS). The first algorithm is a closed-form
algebraic and less complex solution, the second
one can operate under less restrictive conditions

on the system parameters.

https://doi.org/10.52111/qn;js.2023.17507

The contributions of this article are
summarized as follows.

 Using tensor model to set up two LS
channel estimation algorithms based on Khatri-
Rao Factorization (KRF) and the Bilinear
Alternating Least Squares (BALS).

* Consider the relationship between the
IRS-assisted MIMO system parameters for the
estimated matrix rank to make the problems
feasible.

Notation and operator: Matrices are
represented with boldface capital letters (A; B;...),
and vectors are denoted by boldface lowercase
letters (a; b;...). Tensors are symbolized by
calligraphic letters. Transpose and pseudo-inverse
of a matrix A are denoted as AT and A'. ||A||F
denote the Frobenius norm of A. The operator
diag(a) forms a diagonal matrix out of its
vector argument, while *,0,0, ©,® denote the
conjugate, outer product, Khatri Rao, Hadamard
and Kronecker products, respectively. I,
denotes the N x N identity matrix. The operator
vec(r) vectorizes an [/xJ matrix argument,
while unvec, (-) does the opposite operation.
Moreover, vecd(:) forms a vector out of the
diagonal of its matrix argument. The n-mode
product between a tensor Y € C™/~* and a matrix
A e C®isdenoted Yx, A, for 1 < n<N. The
operator D (A) forms a diagonal matrix from the
i-th row of its matrix argument A. Moreover, A,
denotes the i-th row of the matrix A.

2. SIGNAL MODEL AND SYSTEM

In this article review the MIMO communication
systems assisted by an IRS. The transmitter
side is a Base Station (BS) equipped with an
array of M, antennas and the receiver side is
a User Terminal (UT) with M, antennas. The
IRS consists of L passive elements, capable
of individually adjusting their reflectances
(i.e. phase shift control). The system model is
illustrated in Figure 1.
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IES consists of passive elements
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Figure 1. Model of the IRS-assisted MIMO system.
The signal at the device input can be
represented by,'*!

yl[t1= G™ 7 (s[t{]0 H* ™ x[1]) +n[z],
1<t<T,

@)

or in a different way,
ylt]1= G™ " diag(s[sDH™ "x[¢]) +n[z], (2)

where, X[t]€ C"** is a vector whose elements are
transmitted  pilot  signals at  time ¢,
s[t]:[slte-’%,..., 5, e ]T eC is the vector that
models the phase shifts and activation pattern of
the IRS, where ¢ €(0,27] is phase shift and
S, € {O, 1} is the magnitude that controls the on-
off state of the IRS elements at time ¢, respectively.
H* ™ e C""#is the MIMO channel matrix

from base station BS to IRS and GV e CMv*
denote the MIMO channel between the IRS and the

user terminal UT, and n[¢] e C"v* is the Additive
White Gaussian Noise (AWGN) vector.

The training signal is modeled as shown in
Figure 2. The training signal length 7' is divided
into Q blocks, where each block is called a time
slot of length 7, i.e. T, = QT. In expression (2),
y[q,1= y[(g-1)T +1¢] as the received signal at
the #-th time slot of the g-th block, t = 1,..., T,
q =1,..., Q. Suppose, the time slot transmission,
IRS adjusts its phase shifts as a function of time

t = 1,..., T and a block-fading channel, which

x ]
. service dead | 80
; | My eo
¢ zonmes i 2R
|

means that the BS-IRS and IRS-UT channels are
constant during 7 time slots.
¢ Ts
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Figure 2. The time frame structure of the pilot signal
pattern.

According to the signal frame structure
in Figure 2, the IRS phase shift vector
{s[1]....,s[Q]} is constant during the T time
slots of the g-th block and varies from block
to block and the pilot signals {X[1],...,x[T]}
are repeated over the O blocks. Mathematical
representation in,'*

slg,t]=s[q], 1<t<T 3)
x[g,t]=x[q], 1<¢g <0 4)

Accordingly, the signal in expression (2)
is rewritten as

¥lg,t1=G"™ " diag(s[g]H” " x[1]+n[g,1]. (5)

All signals received in the time slot 7 of
the g-th block, represented by the vector,
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Y(q]=[ylg,1]..y[¢,T]]eC"*" so we can
perform,'*

Y[q]=G" " diag(s[gDH" "™ X" +N[g],  (6)
where, X= [X[l],---,X[T]]T eC™, and
N2 [n[1],...n[T]] e C*".

3. LEAST SQUARES (LS) CHANNEL
ESTIMATION WITH TENSOR SIGNAL
MODELING

Least Squares (LS) channel estimation is the
most commonly used basic linear estimation
method for channel estimation. LS channel
estimation performs the minimum squared
distance between the received signal and the
transmitted signal.

To derive the LS estimate in the
case in question, apply the property
vec(ABC) = (CT o A) vec(B) and transform the
expressions from (1) to (6), we have:

)’[(]] _ {X(HBS—IRS )T<> GIRS—UT} s,
_ (X®IMU ){(HBS—IRS)TO GIRS-UT}S[q] +n[q],

(7

where,

¥lg]2 vec(Y[g]) e C*,

n[¢]=vec(N[g]) e C"""and we have used

property (A®B)(CD) = (AC):(BD) *

Defining Y2 [y[l]...y[Q]] e CMe and

X2(X®I, )eCM" we have

? — X{(HBS—IRS)TO GIRS-UT}ST +N, (8)

where, S [s[l],...,s[Q]]T eC%", and NeCM™?s
the noise matrix set up in the same way as Y.
Finally, defined y= vec(\?) eC"™  and apply
the property vec(ABC)= (CT ® A)vec(B) to
expression (8), we have

y= (S ® 5() vec {(HBS”RS)TO G'RS'UT} +n (9)
or simply write in y = U@ +n, (10)

where, U2S®X e CoMox Mty and

0 A Vec{(HBS—ms)T<> GIRS-UT} c (CMHMUL is the

https://doi.org/10.52111/qn;js.2023.17507

composite channel parameter, combining the
BS-IRS and IRS-UT channels. Estimating the
LS channel applied to the composite channel in
our case is the minimum of the problem,®

y-Ue|’, (11)

0 =argmin
0

the solution (11) results found @ = U'y. Applying
the Kronecker product of U, this solution can be
simply rewritten 0= (S ®X")y.

In the conventional LS estimation
problems just presented, the composite channel
linear parameter vector 0 does not use the Katri-
Rao structure. This is unfortunate, because the
signal expression (6), or its equivalent (8) can be
written as a parallel factor (PARAFAC) tensor
model. The application of tensor model allows
to improve the accuracy of channel estimation
compared to traditional LS methods. This can
compute a separate estimate for the H?/® and
G/#5UT channels instead of the composite channel
estimate 0.

To simplify the signal modeling by tensor
operation, we first ignore the noise component
in expression (6), leaving only the signal
component, SO we can rewrite as

Plg]= GIRS_UTDq SZ', 75 X(HBS-IRS )T eC™,
(12)

where, D, (S) £ diag(s[¢]) denotes diagonal matrix
of the g-th row of the IRS phase shift matrix
S on its main diagonal. The matrix f’[q] can
be viewed as the g-th front matrix slice of the
3-dimensional tensor Y e C*v*™¢ according to
the PARAFAC decomposition. This operation
is also the Canonical Polyadic Decomposition
(CPD). Each (m, t, g)-th element of the received
signal tensor, regardless of noise, is written in,**3!

L
pm,t,q = ng,nzt,nsq,n’ (13)
n=1

where, g, 2[G™T) |z 2[Z],, s,, 2[S],.

m,n? t,n

The abbreviation for PARAFAC decomposition
(13) is written as Y = [G’RS’UT,Z,S]. Using n-mode
product notation, the PARAFAC decomposition
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of the zero-noise received signal tensor can be
represented by,**%

Y‘:Fﬂ x, G"™ T %, Z.x, 8. (14)

Exploiting the linear triple of the
PARAFAC decomposition, we can expand the
received signal tensor Y in the form of three
matrices as follows,?%%

13] — GIRS_UT(SOZ)T c (CMUXTQ’ (15)
P, = Z(SoG™ ) e CMrT2, (16)
P, =S(ZoG"™ ) eCOMT, (17)

where, P, 2[P[I]....P[K]]. P,2[P[1],..,P"[0]]
P, £[ vee(P[1]).... vee(P[O)) | -

Next, the algebraic structure of the
PARAFAC (13) model is exploited to establish
two methods of channel estimation. The
PARAFAC model is very usable thanks to
its essential factor identification uniqueness
property, which is derived from the concept of
Kruskal rank (k-rank).

4. PROPOSAL TO EXTEND LS CHANNEL
ESTIMATION UNDER TENSOR SIGNAL
MODEL

In this section, we extend the estimating HZS
kS and va G™SUT channel matrices from the
Tensor signal modeling is presented as shown
in (13). First, we define, YT2Y+N as the
noise-corrupted received signal tensor, where
N € CM"™@ s the additive noise tensor.
Similarly, P, 2 E +N,,i=12,3 are the 1-mode,
2-mode, and 3-mode extended matrix noise
versions respectively in the tensor expressions
of the received signal (15-17), va Ngj,;
corresponds to the extended matrices of the
noise tensor.

In this study, the pilot signal matrix X
calculated using semi-unitary matrices satisfying
x” X=T1, , same for the phase shifts matrix
IRS S is 8”S = QI . A best option for computing
X and S matrices is to use truncated Discrete

Fourier transform (DFT) matrices.

4.1. LS channel estimation based on Khatri-
Rao Factorization

We can first rewrite the noise expansion matrix
(17) as

P = S(ZOGIRS—UT)T N,
_ S[(HBS-IRS)T<> GIRS-UT]T [(HBS-IRS)T0 GIRS—UT)]T +N,,
(18)

in the transformations of the above expression,
we used the property, AWB CoD = AC ¢ BD

Applying a bilinear filter on the time
domain at the receiver by exploiting the
knowledge of the IRS matrix and the pilot signal
matrix, as follows

Xt ®IMU P3T 7 T ) R TOGIRS—UT +N3 LQ

(19)

where, N;= X'@I, N[ S "is the noise
component after filtering. Note Qe CY"t is
the Khatri-Rao structured noise version of the
virtual MIMO channel in an IRS-assisted MIMO
systems. Based on the semi-unitary structure of
the S and X matrices, the correlation properties
of the additive noise are not affected by the

bilinear filter step.

From expression (19), we deduce the
estimation of the HZS*S and G®SUT matrices
by the Khatri-Rao least squares approximation
problem,

rflu(? HQ —(HPSRS YT GIRSUT Hi ‘ (20)

The efficiency of this problem is thanks
to the application of the KRF (Khatri-Rao
factorization) algorithm. Expression (20) can
be understood as finding the HZ/ES and GRSUT
matrix estimators to minimize the set rank 1

matrix approximations, >33

(Y BS—IRS (~NIRS—UT
H ,G

~ T 2
Qn _gnhn o

L
=argmin) |
h, g, n=1

21)
where,

S My xM My, <1
Q, =unvec,, o, €C g cC™" anq
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hf € C"M: are the n-th column of G™Y" matrix,

and n-th row of H*® matrix, respectively. The
estimates of g, and h, in (21) can be obtained from
the left and right dominant singular vectors Q ,

respectively, with 1 <n < L, respectively. Thus, the
estimation problem under consideration is
transformed into L approximation submatrix

problems of rank 1. Once we find H* ™ and

G™U from (21), we can set up a composite
channel 0.

4.2. BALS channel estimation

From the noise versions of the expansion matrix
in expressions (15) and (16), we can derive
an iterative solution based on the Bilinear
Alternating Least Squares algorithm. This
algorithm is a simplified version of the Trilinear
Alternating Least Squares algorithm for
estimating the factor matrices of the PARAFAC
model.** In this case, since the matrix S is known
at the receiver, the G*SUT and H?S® matrices
are estimated by the method of interleaving
by optimizing in the iterative process of the
following two cost functions,*

2
GRS-UT _ arg min P1 _Grs-ur [SOX(HBSJRS)T]T ’
GlRS*UT ya
(22)
I
B s — argmin|[P, _X(HBS—IRS)T So GHRs-UT ,
HBS*IRS F
(23)
the results of the solutions are:
A _ _ T T t
GRs-ur :P1 [SO X HPSIRS (24)
ﬁBS-IRS T _ X+P [ So G/RS—UT TF (25)
= : ,

The convergence is declared when
He(i)_e(i—l) <o, with e(i):HY_Y(,-) is the

the the reconstruction erro calculated at the

2
F

i-th iteration, 0 a threshold parameter, and

A A ~ T
Y(i) _ I:GIRS—UT’ X(HBSJRS )(i)
PARAFAC model (c.f (6), (13)) from the estimated
channel matrices Gfﬁs'w and Hﬁf RS at the end
of the i-th iteration.

,S} is the reconstructed

https://doi.org/10.52111/qn;js.2023.17507

If the matrices X and S have orthogonal
columns (requires Q > L and T > M, are
required), the right pseudo-inverse in (24) and
(25) can be repeated by matrix products. This
results in a low complexity BALS algorithm
with simple estimation steps.

The common feature of the two algorithms
is that the cascaded channel estimation is
achieved by separating the estimates of the
two G5V and HZ5®S channel matrices, which
improves the performance compared to the
direct estimation of the cascaded channel using
the conventional least squares algorithm. By
focusing on pilot-assisted channel estimation
methods, we improve the algorithm in,* to have
a more comprehensive formulation of IRS-
assisted channel estimation methods. Based on
the tensor model, thereby giving necessary notes
useful for the design of training parameters.

4.3. Feasibility conditions of extended
estimation algorithms

The KRF method with a bilinear filter step as in
(19) requires an IRS phase shift matrix S and the
pilot symbol matrix X have full column rank,
subject to the following conditions:

Q>Land T>M, (26)

As mentioned earlier, it is best to choose
the X and S matrices as semi-unitary (or column-
orthogonal) matrices. It is explained that instead
of inverting the matrices in (19) we use semi-
unitary single matrix products to simplify
processing at the receiver. In addition, the
correlation properties of the noise component
after filtering in (19) are preserved.

The BALS method requires two Khatri-
T
Rao products A, =SoX H* ™ cC?™" and

A, =SoG™ " ¢ have full column rank,
such that (24) and (25) admit unique solutions.
This means that the conditions Q7 > L and
OM,, > L must be satisfied. Combining these
two inequalities results in min(Q7, OM,) = L,
or equivalently, Omin(7, M,) > L. Also notice
that the condition 7> M, in (23) is required,
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since X must have the full column rank to be left
inverse. Therefore, the following conditions are
necessary

Omin(T, M)>L vaT=M,  (27)

Comparing conditions (26) and (27), we
can see that the BALS estimation method has
less constraints on the minimum number of time
blocks Q for the training channel than the KRF
method. In the special case M, = 1 (MISO or
SISO systems, respectively), the inequalities
(26) and (27) equal signs occur, meaning that
BALS and KRF are subject to the same training
requirements. Obviously BALS algorithm has
advantages over KRF when applied in MIMO
system, because BALS can work with O <L, while
KRF requires Q > L. Note that, if Q = 1, KRF
estimation method is equivalent to conventional
LS estimator. However, in this case we cannot
solve/separate the estimation problem of two
channel matrices through solving problem (20).
On the other hand, the KRF algorithm has lower
computational complexity than BALS, which
will be presented later in the results section and
discussed in the following section.

In addition, it should be noted that (27)
is a necessary but not guaranteed condition
for the uniqueness of BALS estimates. The
sufficient condition can be derived from
the rank characteristics of the matrices

SoX ) r c 9™ and SOGIRS—UT € CMuxL.

To ensure the uniqueness of the channel
estimates in solving problems (22) and (23)
for matrices in Khatri-Rao form, applying the
lemmas in,**¢ the result is

rank(S) + rank[X(HBS"RS )T} >L+l (29)
rank(S) + rank(G™ ") > L +1 (29)

We are considering the channel training
parameters, specifically calculating such that the
IRS phase shift matrix S and the pilot symbols
matrix X have full rank. These conditions are
useful for system design when using the BALS
estimation method.

4.3.1. Full rank of channel matrix H*>'®S and
GIRS—UT

Assuming that both HES®S and GRSUT channel
matrices have full rank (in case of Rayleigh
fading channel), the condition (28)-(29) can be
rewritten as

min(Q, L) + min(M,, L) > L + 1 (30)
min(Q, L) + min(M, L) > L+ 1 (31)
We can distinguish two cases as follows.

*L>T=>M,and L > M, In this case,
the base station BS and user equipment UT have
small antenna array size, the number of BS and
UT antennas is smaller than the number of IRS
elements. Condition (28)-(29) becomes

M, +min(Q, L) >L+ 1 (32)
M, +min(Q, L) =L +1 (33)

e T'>M, > L: In this case, the base station
BS is assumed to be equipped with a large
antenna array. The minimum number of BS
antennas is equal to the number of IRS elements
(massive MIMO system setup). Since condition
(28) is always satisfied for all values of O, the
uniqueness of the channel estimate depends only
on (29), that is

min(Q, L) + min(M, L)>L+1 (34)

Conditions (32) and (33) establish a
trade-off between the time dimension (the
number of IRS training blocks Q) and the two
spatial dimensions (the number of transmitting
antennas M, and the number of receiving
antennas M) for the case channel restore.
For example, if O < L, this condition implies
M, +Q>L+1and M,+ Q> L +1, which is
equivalent to min(M, + Q, M, + Q) > L + 1.
That is, the number of transmitting (or receiving)
antennas can be reduced while ensuring that
the unique characteristic of the BALS channel
estimation method is compensated by increasing
the number of time blocks Q.

4.3.2. The H?*'® and G™"SYT channel matrices

lack rank

In millimeter wave MIMO systems, a large
number of transmit/receive antennas coupled
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with a poorly scattered propagation medium
can result in low-rank HZ5% and G'*"UT channel
matrices. Assume that the signal propagating
between the BS base station and the IRS
via C, clusters, while the signal propagating
between the IRS and the wuser terminal UT
through the C, cluster. Also, suppose that each
cluster contributes a ray of complex amplitude
and forms the angle of incidence or angle of
departure. We can represent the H?5/% and G/*-VT
channel matrices as follows,*’

HBS_,RS — A]RSdiag(a)Ag]S’ (35)
G™UT B, diag(B)BLL, (36)

M pxC, LxC, M xC.
where, Ay €eC"#™, AR, eC™™, B, eC"

B, € C"“are array response matrices, and the

vectors a, P are the complex amplitude
coefficients of the BS-IRS and IRS-UT channels.
In case of lack of rank, then rank(H*'%) = C,
and rank(G"*Y") = C,, with C, <min(M,, L)and
C,<min(M, L).

Considering condition (26), the lack of
rank of the channel matrix does not affect the
solution of the channel estimation problem for
the KRF algorithm. However, for the case of
BALS estimation, since the uniqueness of the
LS estimate of the GESUT and HZ5®S matrices
depends on the rank of these matrices, as shown
in conditions (28) and (29). For the BALS
estimate, we can derive the following useful
results.

* Case T > M,: Conditions (28) and (29)
become

min(Q, L)+ C, >L+1 (37)
min(Q, L) +C,>L+ 1 (38)

The following scenarios are possible. If
O > L, we conclude that these conditions are
always satisfied, for every ranks of the channel
matrices. If Q < L, these conditions become Q +
C,>2L+1and Q+C,>L + 1, which is useful
for choosing a block number Q that ensures the
uniqueness of the channel estimates in the case
lack of rank.
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 Case Q > L: In this case, conditions (28)
and (29) are always satisfied, for all ranks of the
G*SUT and HZS/®S matrices.

5. SIMULATION RESULTS AND DISCUSSION

In this section, some simulation results are
presented to evaluate the performance of the
channel estimation methods in this article
and compare them with similar methods. The
channel estimates are evaluated in terms of the
Normalized Mean Square Error NMSE given by,

(HBS—IRS )”) _(I:IBSJRS )(’) ’

- (39)

1 [
c = H(HBS—IRS )(”

NMSE(H” ") =

F

where, (I:IBS”RS )(1) is the estimated BS-IRS

channel at the /-th run, C represents the number of
Monte Carlo runs. Similar definitions apply to the

. o o
(G’RS -ur ) channel estimation.

The SNR(dB) ratio is defined as

—2
SNR(dB)=10log,, [ I, } (40)

I

where, Y is the generated noiseless received
signal tensor corresponding to the expression (13),
N is the additive noise tensor.

In the simulation calculations, assuming
the elements of the channel matrices HEZSES
and G®5UT are independent and identically
distributed (i.i.d) zero-mean circularly-symmetric
complex Gaussian random variables. Note that
the estimated channel matrix elements HS/%S
and G®UT in expression (21) of the KRF
algorithm found using the SVD (Singular
Value  Decomposition) tensor  operation
t—SVD(Q,).3>¥ In order to facilitate the
evaluation of the quality of the algorithms,
we choose the same system parameters as the
reference articles, depending on each case.

Figure 3 depicts the NMSE performance
curves in terms of SNR (dB) for the KRF and
BALS algorithms. This is the result of system
parameters 7'=4, M, =4, M =2, Q=50 and the

84 | Quy Nhon University Journal of Science, 2023, 17(5), 75-89



QUY NHON UNIVERSITY

I SCIENCE

number of IRS elements with different values
L =10, 50. In this article, the BALS estimation
calculations, we choose e = 107, Although the
number of iterations of the BALS algorithm is
natural, only a few iterations can be converged
(usually less than 10 iterations) thanks to the
information that the IRS matrix S remains
constant across the iterations.

Observing the results of Figure 3, we
see that both algorithms give the desired
performance. With the same number of IRS
elements L, the estimated performance of the two
algorithms KPF and BALS is similar. In terms
of complexity, the KRF algorithm has a lower
complexity but more restrictive requirements
for the training parameter Q. While the iterative
BALS method, although computationally more
complex, can operate under more flexible
choices of system parameters and with lower
training costs. The system parameter constraints
we discussed in section 4.3. On the other
hand, the NMSE performance decreases as the
number of IRS elements increases L, which is
the expected result since the number of channel
coefficients in the matries G507 va HZ/%S to be
estimated also increases with L. This means that
it is possible to increase the system estimation
performance while reducing the structural
complexity of the IRS.

NMSE performance of channel estimates

10T —— G-IRS to UT (KRF, L =10)
--p--- GIRS to UT (BALS, L =10)
—¢— G-IRS to UT (KRF, L =50)
3| --+-- G-IRS to UT (BALS, L =50)
10| —e—H.BS to IRS (KRF, L =10)
--&-- H-BS to IRS (BALS, L =10)
—&— H-BS to IRS (KRF, L =50)
4| ===~ H-BS to IRS (BALS, L =50)
0 5 10 15 20 25 30
SNR (dB)

Figure 3. NMSE performance of channel estimates

N ~
HBS—IRS Vé, G[RS— ur

NMSE performance of composite channel parameter estimation

—&—KRF,L=10
--p-- BALS, L=10
—4— KRF,L=50
-=4+-BALS. L =50 [
—&— KRF, L =100
--EF- BALS, L =100

10°

NMSE

0 i i i i i
0 5 10 16 20 25 30
SNR (dB)
Figure 4. NMSE performance of composite channel

parameter estimation 0.

Figure 4 is the result of calculating the
NMSE performance of estimating the composite
parameter vector 0 according to the parameters
Q=100,T=4,M,=3,M,= 20, and L has the
values 10, 50, 100. This result is consistent with
the results of Figure 3, the estimated efficiency
decreases as the number of IRS elements L
increases. Another method to overcome the
performance degradation presented in,* is to
divide the IRS elements into groups of activation/
deactivation in a time-domain sequential
manner. However, this method will increase the
total training time by a factor proportional to the
number of element groups.

_, Comparison of NMSE performance of KRF and conventional LS

—P—15,L=50
—@4—KRF, L =50

NMSE

|
1] i 10 15 20 25 30
SNR (dB)

Figure 5. Comparison of NMSE performance of

KRF estimator and conventional LS estimator.

In Figure 5, we compare the estimation
results of the KRF algorithm with the
conventional LS method. In this result, we choose
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Q=L=50,T=M,=20, M, ,=8.The conventional
LS method plotted on the graph is to estimate the
composite channel parameter vector, ignoring
the Khatri-Rao structure that is attenuated during
the signal model vectorization. In contrast,
the KRF algorithm in this paper exploits the
Khatri-Rao channel structure and establishes
from channel estimation matrices the HES/S

va éIRS-UT

In Figure 6 is the NMSE performance
estimate of the lacking rank HPS RS vy GRS
channel matrices. In this result, the channel
matrices are created according to the model
(35)-(36), the channel parameters are selected,
O=L=64,M,=4and T= M, = 4; 20, where
C,= C,= 1. For comparison, we use the NMSE
results of the LS channel estimation method
proposed in.®

Observing the results of Figure 6, we see
that the KRF algorithm has superior performance
compared to the conventional LS algorithm. The
gain in terms of SNR is about 7dB. This result
is explained by the fact that KRF effectively
exploits the Khatri-Rao structure present in the
equivalence channel model.

Comparison of NMSE performance of KRF and conventional LS

‘] —e—BLOCK.LS, Mb=14
"] ——BLOCK-LS, Mb = 20

0 5 10 15 20 25 30
SNR (dB)

Figure 6. NMSE estimation results of composite
channel parameter vector § in the case of matrices

H25S va G™SUT Jacking rank.

Note that the KRF algorithm solves
the problem by reshaping M M, x L Khatri-
Rao channels as L IRS subchannels of size
M, x M, increasing noise rejection by rank-1
approximation steps. As M, and M, increase

https://doi.org/10.52111/qn;js.2023.17507

in large numbers (corresponding to a masive
MIMO systems), the larger the noise spread over
the noise subspace and, therefore, the higher the
level of noise rejection achieved. This is a special
feature of the KRF channel estimation algorithm
that the conventional LS channel estimation
algorithm cannot exploit.

In study,® the pilot signal time frame was
the same as in this study, consisting of dividing
the total training time into O blocks and an
IRS phase shift pattern that varied from block
to block. In,*® the LS estimation method is used
by dividing the training signal frame 7 into
blocks, referred to as the “block-LS” method
for short. In this result, we compare the KRF
estimation algorithm in this paper with the
block-LS estimation method in.*® We can see
that the KRF estimation algorithm outperforms
the block-LS estimation method in.* The authors
in,*® showed that the performance of the block-LS
method was not affected as the number of M,
transmitting antennas and the pilot sequence
length 7T increased. This is in contrast to the KRF
method which provides more accurate channel
estimation as the antenna arrays are larger.
Specifically, the SNR gain of the KRF algorithm
compared to the block-LS method is nearly
4.5 dB for M, = 4 and increased to 5.5 dB for
M, = 20. This can be explained as follows.
For the KRF algorithm, through exploiting the
Khatri-Rao structure of the cascaded channel,
the level of noise cancellation is higher when
the number of M, transmitting antennas or M,
receiving antennas is increased. However, this
advantage comes at the expense of increased
computational complexity, as well as increased
length of pilot sequences.

6. CONCLUSION AND DEVELOPMENT
DIRECTION

In this paper, we have extended the LS channel
estimation algorithm for MIMO information
system assisted by IRS based on tensor model.
The KRF and BALS channel estimation
algorithms are established by efficiently
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exploiting the tensor structure of the received

signal. Both algorithms perform separate
estimation of the transmission channels between
the BS to the IRS and from the IRS to the UT with
the passive elements of the IRS. The closed-form
KRF algorithm has lower complexity but more
restrictive requirements for training parameter Q.
While BALS method, although
computationally more complex, can operate on
more flexible choices for training parameter Q

with lower training cost. In this article, we also

iterative

consider the relationship between the system
parameters to ensure the uniqueness of the
channel estimates. These constraints are useful
when designing system channel estimates. Some
simulation and discussion calculation results, we
have demonstrated the superior performance of
KRF and BALS compared with the conventional
LS estimator, ignoring the Khatri-Rao structure
of the combined channel matrix. In the proposal
of this paper, in section 4.3, we give useful
recommendations for the selection of system
parameters to ensure the uniqueness of channel
estimation.

The KRF and BALS channel estimation
algorithms mentioned in this paper can improve
the performance by exploiting the knowledge
of the rank of the estimation matrices, or, using
compression sensing methods to take advantage
of the sparse representation of the H5S/®S and
G/#5UT channel matrices. This could be the next
research direction of interest.
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