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TÓM TẮT

Bài báo đề xuất mở rộng hai thuật toán ước lượng kênh LS dựa trên mô hình tín hiệu tensor cho các hệ thống 
MIMO được hỗ trợ bởi bề mặt phản xạ thông minh (IRS). Hai thuật toán này khai thác cấu trúc tensor của tín hiệu 
hoa tiêu để thiết lập bài toán ước lượng kênh ghép tầng. Thuật toán thứ nhất mở rộng ước lượng LS dựa trên việc 
khai thác cấu trúc Khatri-Rao Factorization (KRF) của kênh MIMO ghép tầng, bằng cách giải các bài toán con xấp 
xỉ ma trận hạng 1. Bài toán ước lượng thứ hai dựa trên thuật toán BALS (Bilinear Alternating Least Squares), đây 
là phiên bản đơn giản hóa của thuật toán TALS (Trilinear Alternating Least Squares). Ngoài ra, bài báo này cũng 
trình bày mối quan hệ giữa các tham số kênh MIMO để các thuật toán ước lượng trên có tính khả thi. Kết quả mô 
phỏng cho thấy các phương pháp ước lượng LS mở rộng dựa trên mô hình tín hiệu tensor đã cải thiện hiệu suất so 
với ước lượng LS truyền thống.

Từ khóa: Ước lượng kênh, bề mặt phản xạ thông minh, thuật toán dựa trên tensor, Khatri-Rao factorization.
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ABSTRACT 

This paper proposes to extend two Least Squares (LS) channel estimation algorithms based on tensor 
signal model to MIMO systems supported by Intelligent Reflective Surfaces (IRS). These two algorithms exploit 
the tensor structure of the pilot signal to establish the cascaded channel estimation problem. The first algorithm 
extends the LS estimation based on exploiting the Khatri-Rao Factorization (KRF) structure of the cascaded 
MIMO channel, by solving subproblems approximating the 1-rank matrix. The second estimator is based on the 
Bilinear Alternating Least Squares (BALS) algorithm, which is a simplified version of the Trilinear Alternating 
Least Squares (TALS) algorithm. In addition, this paper also presents the relationship between the MIMO channel 
parameters for the above estimation algorithms to be feasible. The simulation results show that the extended LS 
estimation methods based on the tensor signal model have improved performance compared with the conventional 
LS estimation.

Keyword: Channel estimation, intelligent reflecting surfaces, tensor-based algorithm, Khatri-Rao factorization. 
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1. INTRODUCTION  

Over the past decade, Multiple Input Multiple 
Output (MIMO) communication systems have 
been extensively studied and considered a key 
technology for enhanced mobile broadband 
communications in fifth generation networks 
(5G), the future beyond-5G (B5G) and sixth 
generation (6G). Several works have thoroughly 
investigated both theoretical and practical 
solutions on spectral efficiency analysis, data 
rate increase, reliability improvement and 
interference reduction, etc.1-4 MIMO systems 
can be classified into different types, such as 
Single-User MIMO (SU-MIMO), Multi-User 

MIMO (MU-MIMO), massive MIMO and 
millimeter wave MIMO, depending on the 
number of user, the number of antennas and the 
operating frequency bands. MIMO systems can 
be applied in wireless communication systems, 
such as cellular networks, wireless Local Area 
Networks (WLANs), vehicle networks, satellite 
communications, and radar systems. Some 
trends in the application of MIMO systems 
include: Internet of Things (IoT) device systems, 
MIMO for Unmanned Aerial Vehicles (UAVs) 
and MIMO for cognitive radio networks.

The above mentioned advantages of 
MIMO systems are achieved by the outstanding 
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characteristic of channel hardening, i.e. the 
characteristic of user channels that do not 
fading over time and the favorable propagation 
over  multipath channel. However, for MIMO 
systems, including massive MIMO, there is 
an open problem to ensure the performance of 
users in service dead zones, for example, indoor 
users with thick walls between them and the 
Base Station (BS) or outdoor users surrounded 
by many tall buildings, where gain is difficult to 
compensate for severe channel loss.

In the last few years, a number of studies 
have discussed the potentials and challenges of 
wireless communications assisted  by Intelligent 
Reflective Surfaces (IRS).5-7 Much research has 
been done on both the theory and implementation 
of IRS application in MIMO communication 
systems to maintain performance and increase 
user coverage in service dead zones. With 
the assistance of the IRS, MIMO systems 
can suppress Co-Channel Interference (CCI) 
when the user is at the edge of the cell,8,9 or to 
improve physical layer security.10,11 Besides, 
IRS can be used for information and power 
transfer in a IoT networks.8 IRS also known 
as reconfigurable smart surface or software 
controlled hypersurface consisting of a 2D 
array with a large number of passive or semi-
passive elements can control the electromagnetic 
characteristics of radio frequency waves so 
that the reflected signal adds coherently at the 
receiver or cancels it out to reduce CCI.5-9  Each 
element can operate independently and can be 
reconfigured in a software-defined manner using 
an external controller. The IRS does not require 
dedicated Radio Frequency (RF) strings and is 
powered wirelessly by an external RF source. 
This is in contrast to relay systems that need 
amplify-and-forward or decode-and-forward, 
and require specialized power sources.6

In MIMO systems, the availability of 
Channel State Information (CSI)  is a topic 
of intense research. Accurate and timely CSI 

knowledge plays an important role in wireless 
communication systems. For IRS-assisted 
MIMO systems, there are often a large number 
of IRS elements, which poses a significant 
challenge to solving the channel estimation 
problem in collecting CSI. In these systems, 
there are two basic methods for performing 
channel estimation. First, use the IRS with a 
semi-passive structure in which several active 
elements connected to receive the RF string. In 
this case, the parts that actively perform baseband 
processing at the IRS facilitate the collection  
of  CSI.12

In the second method, the IRS has a 
full passive structure, where the IRS works by 
reflecting the impinging  waves according  some 
phase shift pattern. This is a more difficult case, 
where at the receiver based on the pilot signals 
sent by the transmitter and reflected by the IRS 
performs a cascade estimation between the 
transmitter to the IRS and the IRS to the receiver. 
In this case, the IRS uses a phase shift model in 
which the training phases play an important role. 
This is the method used in this paper.

A number of published works refer to 
different solutions to the channel estimation 
problem for the case of passive IRS. T. L. Jensen 
et al. have proposed an unbiased estimation 
method with minimal variance and an optimal 
calculation of the IRS phase shift matrix, in 
which the IRS elements are completely passive.13 
The authors in the reference,14 propose a two-
stage algorithm by exploiting the sparse code 
characteristics of multipath channels with low 
rank channel matrices. The cooperative channel 
estimation through the training beam of IRS-
assisted massive MIMO systems on the terahertz 
channel is presented15. IRS was proposed as a 
solution to reduce the congestion problem and 
also presented the method of channel estimation 
on millimeter wave channel.16 The IRS-assisted 
MIMO system is considered and channel 
estimation is performed by the two-stage 



78 Quy Nhon University Journal of Science, 2023, 17(5), 75-89
https://doi.org/10.52111/qnjs.2023.17507

QUY NHON UNIVERSITY
SCIENCEJOURNAL OF

method and the IRS-supported transmission 
route is estimated by the approximate message 
transmission method.17 In the study,18 established 
the channel estimation based on sparse matrix 
factorization of the Internet of Things (IoT) 
system supported by the IRS. The latest research 
works,19-21 successfully applied tensor models in 
many signal processing problems, especially for 
wireless communication systems. Semi-blind 
channel estimation methods for MIMO systems 
have also considered,22,23 channel estimation 
methods for cooperative communication,24,25 and 
more recently, estimation methods compressed 
channel in massive MIMO systems.26,27

In most of these works, signal processing 
is very efficient thanks to the uniqueness of tensor 
decomposition to exploit the multidimensional 
nature of transmitted/received signals and 
communication channels. The parallel factor 
(PARAFAC) structure of the tensor model is 
very convenient for the estimation problem of 
time varying multipath channel parameters by 
using pilot signal pattern and IRS phase shift 
signals in time domain.28

In this paper, the tensor model is used 
to extend the least squares channel estimation 
problem. Instead of solving the cascaded MIMO 
channel estimation problem, we propose the 
separate MIMO channel estimation problem 
between the base station transmitter to the 
IRS (BS-IRS) and between the IRS to the User 
Terminal (IRS-UT) by exploiting the PARAFAC 
structure. Accordingly, we set up two algorithms. 
The first algorithm is a closed-form solution 
based on the Khatri-Rao factorization (KRF) 
of the combination of BS-IRS and IRS-UT 
channels. The second algorithm performs an 
iterative Bilinear Alternating Least Squares 
(BALS). The first algorithm is a closed-form 
algebraic and less complex solution, the second 
one can operate under less restrictive conditions 
on the system parameters. 

The contributions of this article are 
summarized as follows.

•	Using tensor model to set up two LS 
channel estimation algorithms based on Khatri-
Rao Factorization (KRF) and the Bilinear 
Alternating Least Squares (BALS). 

•	Consider the relationship between the 
IRS-assisted MIMO system parameters for the 
estimated matrix rank to make the problems 
feasible.

Notation and operator: Matrices are 
represented with boldface capital letters (A; B;…), 
and vectors are denoted by boldface lowercase 
letters (a; b;…). Tensors are symbolized by 
calligraphic letters. Transpose and pseudo-inverse 
of a matrix A are denoted as AT and A†. 

F
A

denote the Frobenius norm of A. The operator 
diag(a) forms a diagonal matrix out of its  
vector argument, while                      denote the 
conjugate, outer product, Khatri Rao, Hadamard 
and Kronecker products, respectively. IN 
denotes the N × N identity matrix. The operator 
vec(·) vectorizes an I×J matrix argument, 
while unvecI×J(·) does the opposite operation. 
Moreover, vecd(·) forms a vector out of the 
diagonal of  its matrix argument. The n-mode 
product between a tensor                      and a matrix                   
                 is denoted nϒ× A , for 1 ≤  n ≤ N.  The 
operator Di(A) forms a diagonal matrix from the 
i-th row of its matrix argument A. Moreover, Ai 
denotes the i-th row of the matrix A. 

2. SIGNAL MODEL AND SYSTEM

In this article review the MIMO communication 
systems assisted by an IRS. The transmitter 
side is a Base Station (BS) equipped with an 
array of MB antennas and the receiver side is 
a User Terminal (UT) with MU antennas. The 
IRS consists of L passive elements, capable 
of individually adjusting their reflectances 
(i.e. phase shift control). The system model is 
illustrated in Figure 1. 
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composite  channel parameter, combining the BS-
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denoted as AT and A†. 
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A denote the Frobenius 
norm of A. The operator diag(a) forms a diagonal 
matrix out of its vector argument, while 
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operator Di(A) forms a diagonal matrix from the i-
th row of its matrix argument A. Moreover, Ai 
denotes the ith row of the matrix A.  

2. SIGNAL MODEL AND SYSTEM 
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systems assisted by an IRS. The transmitter side is 
a Base Station (BS) equipped with an array of MB 
antennas and the receiver side is a User Terminal 
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passive elements, capable of individually adjusting 
their reflectances (i.e. phase shift control). The 
system model is illustrated in Figure 1.  

Figure 1. Model of the IRS-assisted MIMO system. 
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The training signal is modeled as shown in Figure 
2. The training signal length Ts is divided into Q
blocks, where each block is called a time slot of 

length T, i.e. Ts = QT. In expression (2), 
[ , ] [( -1) ]q t y q T ty as the received signal at the 

t-th time slot of the q-th block, t = 1,…, T, q = 1, 
…, Q. Suppose, the time slot transmission, IRS 
adjusts its phase shifts as a function of time            
t = 1, ..., T and a block-fading channel, which 
means that the BS-IRS and IRS-UT channels are 
constant during T time slots.  

Figure 2. The time frame structure of the pilot signal 
pattern. 

According to the signal frame structure in Figure 2, 
the IRS phase shift vector  [1],..., [ ]Qs s is 
constant during the T time slots of the q-th block 
and varies from block to block and the pilot signals 
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of the zero-noise received signal tensor can be 
represented by,28,29

Exploiting the linear triple of the 
PARAFAC decomposition, we can expand the 
received signal tensor ϒ  in the form of three 
matrices as follows,28,29 

Next, the algebraic structure of the 
PARAFAC (13) model is exploited to establish 
two methods of channel estimation. The 
PARAFAC model is very usable thanks to 
its essential factor identification uniqueness 
property, which is derived from the concept of 
Kruskal rank (k-rank). 

4.  PROPOSAL TO EXTEND LS CHANNEL 
ESTIMATION UNDER TENSOR SIGNAL 
MODEL

In this section, we extend the estimating  HBS-

IRS and và GIRS-UT channel matrices from the 
Tensor signal modeling is presented as shown 
in (13). First, we define,               as the  
noise-corrupted received signal tensor, where                            
             is the additive noise tensor.  
Similarly,                                   are the 1-mode, 
2-mode, and 3-mode  extended matrix noise 
versions respectively in the tensor expressions 
of the received signal (15-17), và Ni=1,2,3 
corresponds to the extended matrices of the 
noise tensor.

In this study, the pilot signal matrix X 
calculated using semi-unitary matrices satisfying 

,
B

H
MT=X X I  same for the phase shifts matrix 

IRS S is SHS = QIL. A best option for computing 
X and S matrices is to use truncated Discrete 
Fourier transform (DFT) matrices. 

4.1. LS channel estimation based on Khatri-
Rao Factorization

We can first rewrite the noise expansion matrix 
(17) as

                                                                

in the transformations of the above expression, 
we used the property,

Applying a bilinear filter on the time 
domain at the receiver by exploiting the 
knowledge of the IRS matrix and the pilot signal 
matrix, as follows 

                                                     	       

the Khatri-Rao structured noise version of the 
virtual MIMO channel in an IRS-assisted MIMO 
systems. Based on the semi-unitary structure of 
the S and X matrices, the correlation properties 
of the additive noise are not affected by the 
bilinear filter step.

From expression (19), we deduce the 
estimation of the HBS-IRS and GIRS-UT matrices 
by the Khatri-Rao least squares approximation 
problem,

    
	     

The efficiency of this problem is thanks 
to the application of the KRF (Khatri-Rao  
factorization) algorithm. Expression (20) can 
be understood as finding the HBS-IRS and GIRS-UT 
matrix estimators to minimize the set rank 1 
matrix approximations, 28,32,33 
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in the transformations of the above expression, we 
used the property, .A B C D AC BD  

Applying a bilinear filter on the time domain at the 
receiver by exploiting the knowledge of the IRS 
matrix and the pilot signal matrix, as follows  
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where, 
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MN X I N S is the noise 

component after filtering. Chú ý, B UM M LΩ  is 
the Khatri-Rao structured noise version of the 
virtual MIMO channel in an IRS-assisted MIMO 
systems. Based on the semi-unitary structure of the 
S and X matrices, the correlation properties of the 
additive noise are not affected by the bilinear filter 
step. 

From expression (19), we deduce the estimation of 
the HBS-IRS and GIRS-UT matrices by the Khatri-Rao 
least squares approximation problem, 
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where, 
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ng C and 
1 BMT

nh C are the n-th column of  GIRS-UT matrix, 
and n-th row of  HBS-IRS matrix, respectively.  The 
estimates of gn and hn in (21) can be obtained from 
the left and right dominant singular vectors ,nΩ  
respectively, with 1 ≤ n ≤ L, respectively. Thus, the 
estimation problem under consideration is 
transformed into L approximation submatrix 
problems of rank 1. Once we find ˆ BS IRSH  and 
ˆ IRS UTG  from (21), we can set up a composite 

channel θ.  

4.2  BALS channel estimation  

From the noise versions of the expansion matrix in 
expressions (15) and (16), we can derive an 
iterative solution based on the Bilinear Alternating 
Least Squares algorithm. This algorithm is a 
simplified version of the Trilinear Alternating 
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in the transformations of the above expression, we 
used the property, .A B C D AC BD  

Applying a bilinear filter on the time domain at the 
receiver by exploiting the knowledge of the IRS 
matrix and the pilot signal matrix, as follows  
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where, 
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component after filtering. Chú ý, B UM M LΩ  is 
the Khatri-Rao structured noise version of the 
virtual MIMO channel in an IRS-assisted MIMO 
systems. Based on the semi-unitary structure of the 
S and X matrices, the correlation properties of the 
additive noise are not affected by the bilinear filter 
step. 

From expression (19), we deduce the estimation of 
the HBS-IRS and GIRS-UT matrices by the Khatri-Rao 
least squares approximation problem, 

    
2

min ( ) .BS IRS T IRS UT

FH,G
Ω H G      (20) 

The efficiency of this problem is thanks to the 
application of the KRF (Khatri-Rao  factorization) 
algorithm. Expression (20) can be understood as 
finding the HBS-IRS and GIRS-UT matrix estimators to 
minimize the set rank 1 matrix approximations, 
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estimates of gn and hn in (21) can be obtained from 
the left and right dominant singular vectors ,nΩ  
respectively, with 1 ≤ n ≤ L, respectively. Thus, the 
estimation problem under consideration is 
transformed into L approximation submatrix 
problems of rank 1. Once we find ˆ BS IRSH  and 
ˆ IRS UTG  from (21), we can set up a composite 

channel θ.  

4.2  BALS channel estimation  

From the noise versions of the expansion matrix in 
expressions (15) and (16), we can derive an 
iterative solution based on the Bilinear Alternating 
Least Squares algorithm. This algorithm is a 
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tensor can be represented by,28,29 
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usable thanks to its essential factor identification 
uniqueness property, which is derived from the 
concept of Kruskal rank (k-rank).  

4.  PROPOSAL TO EXTEND LS CHANNEL 
ESTIMATION UNDER TENSOR SIGNAL 
MODEL 
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signal modeling is presented as shown in (13). 
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corrupted received signal tensor, where 
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to the extended matrices of the noise tensor. 
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4.2. BALS channel estimation 

From the noise versions of the expansion matrix 
in expressions (15) and (16), we can derive 
an iterative solution based on the Bilinear 
Alternating Least Squares algorithm. This 
algorithm is a simplified version of the Trilinear 
Alternating Least Squares algorithm for 
estimating the factor matrices of the PARAFAC 
model.34 In this case, since the matrix S is known 
at the receiver, the GIRS-UT and HBS-IRS matrices 
are estimated by the method of interleaving 
by optimizing in the iterative process of the 
following two cost functions,34
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direct estimation of the cascaded channel using 
the conventional least squares algorithm. By 
focusing on pilot-assisted channel estimation 
methods, we improve the algorithm in,39 to have 
a more comprehensive formulation of IRS-
assisted channel estimation methods. Based on 
the tensor model, thereby giving necessary notes 
useful for the design of training parameters.

4.3. Feasibility conditions of extended 
estimation algorithms

The KRF method with a bilinear filter step as in 
(19) requires an IRS phase shift matrix S and the 
pilot symbol matrix X have full column rank, 
subject to the following conditions:
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As mentioned earlier, it is best to choose 
the X and S matrices as semi-unitary (or column-
orthogonal) matrices. It is explained that instead 
of inverting the matrices in (19) we use semi-
unitary single matrix products to simplify 
processing at the receiver. In addition, the 
correlation properties of the noise component 
after filtering in (19) are preserved.	

The BALS method requires two Khatri-
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estimation problem under consideration is 
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ˆ IRS UTG  from (21), we can set up a composite 

channel θ.  

4.2  BALS channel estimation  

From the noise versions of the expansion matrix in 
expressions (15) and (16), we can derive an 
iterative solution based on the Bilinear Alternating 
Least Squares algorithm. This algorithm is a 
simplified version of the Trilinear Alternating 
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Least Squares algorithm for estimating the factor 
matrices of the PARAFAC model.34 In this case, 
since the matrix S is known at the receiver, the 
GIRS-UT and HBS-IRS matrices are estimated by the 
method of interleaving by optimizing in the 
iterative process of the following two cost 
functions,34 
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the results of the solutions are: 
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is the reconstructed 

PARAFAC model (c.f (6), (13)) from the 
estimated channel matrices ( )

ˆ IRS UT
i

G  and ( )
ˆ BS IRS

i
H at 

the end of the i-th iteration.   

If the matrices X and S have orthogonal columns 
(requires  Q ≥ L and T ≥ MU are required), the right 
pseudo-inverse in (24) and (25) can be repeated by 
matrix products. This results in a low complexity 
BALS algorithm with simple estimation steps. 

The common feature of the two algorithms is that 
the cascaded channel estimation is achieved by 
separating the estimates of the two GIRS-UT and HBS-

IRS channel matrices, which improves the 
performance compared to the direct estimation of 
the cascaded channel using the conventional least 
squares algorithm. By focusing on pilot-assisted 
channel estimation methods, we improve the 
algorithm in,39 to have a more comprehensive 
formulation of IRS-assisted channel estimation 
methods. Based on the tensor model, thereby 
giving necessary notes useful for the design of 
training parameters. 

4.3. Feasibility conditions of extended 
estimation algorithms 

The KRF method with a bilinear filter step as in 
(19) requires an IRS phase shift matrix S and the 

pilot symbol matrix X have full column rank, 
subject to the following conditions: 

                     Q ≥ L và T ≥ MB         (26) 

As mentioned earlier, it is best to choose the X and 
S matrices as semi-unitary (or column-orthogonal) 
matrices. It is explained that instead of inverting 
the matrices in (19) we use semi-unitary single 
matrix products to simplify processing at the 
receiver. In addition, the correlation properties of 
the noise component after filtering in (19) are 
preserved.  

The BALS method requires two Khatri-Rao 

products 1

TBS IRS QT LΛ S X H  and 

2
UQM LIRS UTΛ S G  have  full column rank, 

such that (24) and (25) admit unique solutions. 
This means that the conditions QT ≥ L and       
QMU ≥ L must be satisfied. Combining these two 
inequalities results in min(QT, QMU) ≥ L, or 
equivalently, Qmin(T, MU) ≥ L. Also notice that 
the condition T ≥ MB in (23) is required, since X 
must have the full column rank to be left inverse. 
Therefore, the following conditions are necessary 

     Qmin(T,  MU) ≥ L  và T ≥ MB.         (27) 

Comparing conditions (26) and (27), we can see 
that the BALS estimation method has less 
constraints on the minimum number of time blocks 
Q for the training channel than the KRF method. In 
the special case MU = 1 (MISO or SISO systems, 
respectively), the inequalities (26) and (27) equal 
signs occur, meaning that BALS and KRF are 
subject to the same training requirements. 
Obviously BALS algorithm has advantages over 
KRF when applied in MIMO system, because 
BALS can work with Q < L, while KRF requires  
Q ≥ L. Note that, if Q = 1, KRF estimation method 
is equivalent to conventional LS estimator. 
However, in this case we cannot solve/separate  the 
estimation problem of two channel matrices 
through solving problem (20). On the other hand, 
the KRF algorithm has lower computational 
complexity than BALS, which will be presented 
later in the results section and discussed in the 
following section. 

In addition, it should be noted that (27) is a 
necessary but not guaranteed condition for the 
uniqueness of BALS estimates. The sufficient 
condition can be derived from the rank 
characteristics of the matrices 

TBS IRS QT LS X H  
and .UQM LIRS UTS G  

To ensure the uniqueness of the channel estimates 
in solving problems (22) and (23) for matrices in 
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matrices. It is explained that instead of inverting 
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signs occur, meaning that BALS and KRF are 
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KRF when applied in MIMO system, because 
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since X must have the full column rank to be left 
inverse. Therefore, the following conditions are 
necessary
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can see that the BALS estimation method has 
less constraints on the minimum number of time 
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method. In the special case MU = 1 (MISO or 
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estimation method is equivalent to conventional 
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will be presented later in the results section and 
discussed in the following section.
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for the uniqueness of BALS estimates. The 
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the rank characteristics of the matrices 
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useful for system design when using the BALS 
estimation method.
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the number of time blocks Q. 

4.3.2. The HBS-IRS  and GIRS-UT channel matrices 
lack rank 

In millimeter wave MIMO systems, a large number 
of transmit/receive antennas coupled with a poorly 
scattered propagation medium can result in low-
rank HBS-IRS and GIRS-UT channel matrices. Assume 
that the signal propagating between the BS base 
station and the IRS via C1 clusters, while the signal 
propagating  between the IRS and the  user 
terminal UT through the C2 cluster. Also, suppose 
that each cluster contributes a ray of complex 
amplitude and forms the angle of incidence or 
angle of departure. We can represent the HBS-IRS 
and GIRS-UT channel matrices as follows,37  

            Sdiag( ) ,BS IRS H
IRS B

 H A α A               (35) 

             diag( ) ,IRS UT H
UT IRS

 G B β B              (36) 

where, 1 1
BS IRS, ,BM C L C  A A  2 ,UM C

UT
B

2
IRS

L CB are array response matrices, and the 
vectors α, β are the complex amplitude coefficients 
of the BS-IRS and IRS-UT channels. In case of 
lack of rank, then rank(HBS-IRS) = C1 và     
rank(GIRS-UT) = C2, với C1 ≤ min(MB,  L) and C2 ≤ 
min(MU, L).  

Considering condition (26), the lack of rank of the 
channel matrix does not affect the solution of the 
channel estimation problem for the KRF algorithm. 
However, for the case of BALS estimation, since 
the uniqueness of the LS estimate of the GIRS-UT 
and HBS-IRS matrices depends on the rank of these 
matrices, as shown in conditions (28) and (29). For 
the BALS estimate, we can derive the following 
useful results. 

• Case T ≥ MB: Conditions (28) and (29) 
become 

    min(Q, L) + C1 ≥ L + 1           (37) 

    min(Q, L) + C2 ≥ L + 1                    (38) 

The following scenarios are possible. If Q ≥ L, we 
conclude that these conditions are always satisfied, 
for every ranks of the channel matrices. If Q < L, 
these conditions become Q + C1 ≥ L + 1 and Q + 
C2 ≥ L + 1, which is useful for choosing a block 
number Q that ensures the uniqueness of the 
channel estimates in the case lack of  rank. 

• Case Q ≥ L: In this case, conditions (28) and 
(29) are always satisfied, for all ranks of the GIRS-UT 
and HBS-IRS matrices. 
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5. SIMULATION RESULTS AND DISCUSSION

In this section, some simulation results are 
presented to evaluate the performance of the 
channel estimation methods in this article 
and compare them with similar methods. The 
channel estimates are evaluated in terms of  the  
Normalized Mean Square Error NMSE given by,6
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presented to evaluate the performance of the 
channel estimation methods in this article and 
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Normalized Mean Square Error NMSE given by,6 
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where,  ( )ˆ lBS IRSH is the estimated BS-IRS 
channel at the l-th run, C represents the number of 
Monte Carlo runs. Similar definitions apply to the 

 ( )ˆ lIRS UTG channel estimation.  

The SNR(dB) ratio is defined as 
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where,  is the generated noiseless received 
signal tensor corresponding to the expression (13), 

is the additive noise tensor.  

In the simulation calculations, assuming the 
elements of the channel matrices HBS-IRS và GIRS-UT 
are independent and identically distributed (i.i.d) 
zero-mean circularly-symmetric complex Gaussian 
random variables. Note that the estimated channel 
matrix elements  -ˆ BS IRSH và ˆ IRS UTG in expression 
(21) of the KRF algorithm found using the SVD 
(Singular Value Decomposition) tensor operation 

SVD( )nt  Ω .32,33 In order to facilitate the 
evaluation of the quality of the algorithms, we 
choose the same system parameters as the 
reference articles, depending on each case. 

Figure 3 depicts the NMSE performance curves in 
terms of SNR (dB) for the KRF and BALS 
algorithms. This is the result of system parameters 
T = 4, MB = 4, MU = 2, Q = 50 and the number of 
IRS elements with different values L = 10, 50. In 
this article, the BALS estimation calculations, we 
choose e = 10-5.  Although the number of iterations 
of the BALS algorithm is natural, only a few 
iterations can be converged (usually less than 10 
iterations) thanks to the information that the IRS 
matrix S remains constant across the iterations. 

Observing the results of Figure 3, we see that both 
algorithms give the desired performance. With the 
same number of IRS elements L, the estimated 

performance of the two algorithms KPF and BALS 
is similar. In terms of complexity, the KRF 
algorithm has a lower complexity but more 
restrictive requirements for the training parameter 
Q. While the iterative BALS method, although 
computationally more complex, can operate under 
more flexible choices of system parameters and 
with lower training costs. The system parameter 
constraints we discussed in section 4.3. On the 
other hand, the NMSE performance decreases as 
the number of IRS elements increases L, which is 
the expected result since the number of channel 
coefficients in the matries GIRS-UT và HBS-IRS to be 
estimated also increases with L. This means that it 
is possible to increase the system estimation 
performance while reducing the structural 
complexity of the IRS. 

Figure 3. NMSE performance of channel estimates. 
ˆ BS IRSH and ˆ .IRS UTG

Figure 4. NMSE performance of composite channel 
parameter estimation ˆ .θ

Figure 4 is the result of calculating the NMSE 
performance of estimating the composite 
parameter vector θ according to the parameters Q
= 100, T = 4, MB = 3, MU = 20, and L has the 
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5. SIMULATION RESULTS AND 
DISCUSSION 

In this section, some simulation results are 
presented to evaluate the performance of the 
channel estimation methods in this article and 
compare them with similar methods. The channel 
estimates are evaluated in terms of  the  
Normalized Mean Square Error NMSE given by,6 
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where,  ( )ˆ lBS IRSH is the estimated BS-IRS 
channel at the l-th run, C represents the number of 
Monte Carlo runs. Similar definitions apply to the 

 ( )ˆ lIRS UTG channel estimation.  

The SNR(dB) ratio is defined as 
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where,  is the generated noiseless received 
signal tensor corresponding to the expression (13), 

is the additive noise tensor.  
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number of IRS elements with different values 
L = 10, 50. In this article, the BALS estimation 
calculations, we choose e = 10-5.  Although the 
number of iterations of the BALS algorithm is 
natural, only a few iterations can be converged 
(usually less than 10 iterations) thanks to the 
information that the IRS matrix S remains 
constant across the iterations.

Observing the results of Figure 3, we 
see that both algorithms give the desired 
performance. With the same number of IRS 
elements L, the estimated performance of the two 
algorithms KPF and BALS is similar. In terms 
of complexity, the KRF algorithm has a lower 
complexity but more restrictive requirements 
for the training parameter Q. While the iterative 
BALS method, although computationally more 
complex, can operate under more flexible 
choices of system parameters and with lower 
training costs. The system parameter constraints 
we discussed in section 4.3. On the other 
hand, the NMSE performance decreases as the 
number of IRS elements increases L, which is 
the expected result since the number of channel 
coefficients in the matries GIRS-UT và HBS-IRS to be 
estimated also increases with L. This means that 
it is possible to increase the system estimation 
performance while reducing the structural 
complexity of the IRS.

Figure 3. NMSE performance of channel estimates   
HÂBS-IRS và GÂIRS-UT.

Figure 4. NMSE performance of composite channel 
parameter estimation θ.

Figure 4 is the result of calculating the 
NMSE performance of estimating the composite 
parameter vector θ according to the parameters 
Q = 100, T = 4, MB = 3, MU = 20, and L has the 
values 10, 50, 100. This result is consistent with 
the results of Figure 3, the estimated efficiency 
decreases as the number of IRS elements L 
increases. Another method to overcome the 
performance degradation presented in,40 is to 
divide the IRS elements into groups of activation/
deactivation in a time-domain sequential 
manner. However, this method will increase the 
total training time by a factor proportional to the 
number of element groups.

Figure 5. Comparison of NMSE performance of 
KRF estimator and conventional LS estimator.

In Figure 5, we compare the estimation 
results of the KRF algorithm with the 
conventional LS method. In this result, we choose 
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Q = L = 50, T = MB = 20, MU = 8. The conventional 
LS method plotted on the graph is to estimate the 
composite channel parameter vector, ignoring 
the Khatri-Rao structure that is attenuated during 
the signal model vectorization. In contrast, 
the KRF algorithm in this paper exploits the 
Khatri-Rao channel structure and establishes     
from  channel estimation matrices the HÂBS-IRS  
và GÂIRS-UT. 

In Figure 6 is the NMSE performance 
estimate of the lacking rank HÂBS-IRS và GÂIRS-UT 
channel matrices. In this result, the channel 
matrices are created according to the model 
(35)-(36), the channel parameters are selected,  
Q = L = 64, MU = 4 and T = MB = 4; 20, where 
C1 = C2 = 1. For comparison, we use the NMSE 
results of the LS channel estimation method 
proposed in.38 

Observing the results of Figure 6, we see 
that the KRF algorithm has superior performance 
compared to the conventional LS algorithm. The 
gain in terms of SNR is about 7dB. This result 
is explained by the fact that KRF effectively 
exploits the Khatri-Rao structure present in the 
equivalence channel model. 

Figure 6. NMSE estimation results of composite 
channel parameter vector θ in the case of matrices  
HÂBS-IRS và GÂIRS-UT lacking rank.

Note that the KRF algorithm solves 
the problem by reshaping MBMU × L Khatri-
Rao channels as L IRS subchannels of size 
MB × MU, increasing noise rejection by rank-1 
approximation steps. As MB and MU increase 

in large numbers (corresponding to a masive 
MIMO systems), the larger the noise spread over 
the noise subspace and, therefore, the higher the 
level of noise rejection achieved. This is a special 
feature of the KRF channel estimation algorithm 
that the conventional LS channel estimation 
algorithm cannot exploit.

In study,38 the pilot signal time frame was 
the same as in this study, consisting of dividing 
the total training time into Q blocks and an 
IRS phase shift pattern that varied from block 
to block. In,38 the LS estimation method is used 
by dividing the training signal frame T into 
blocks, referred to as the “block-LS” method 
for short. In this result, we compare the KRF 
estimation algorithm in this paper with the 
block-LS estimation method in.38 We can see 
that the KRF estimation algorithm outperforms 
the block-LS estimation method in.38 The authors 
in,38 showed that the performance of the block-LS 
method was not affected as the number of MB 
transmitting antennas and the pilot sequence 
length T increased. This is in contrast to the KRF 
method which provides more accurate channel 
estimation as the antenna arrays are larger.  
Specifically, the SNR gain of the KRF algorithm 
compared to the block-LS method is nearly  
4.5 dB for MB = 4 and increased to 5.5 dB for  
MB = 20. This can be explained as follows. 
For the KRF algorithm, through exploiting the 
Khatri-Rao structure of the cascaded  channel, 
the level of noise cancellation is higher when 
the number of MB transmitting antennas or MU 
receiving antennas is increased. However, this 
advantage comes at the expense of increased 
computational complexity, as well as increased 
length of pilot sequences.

6. CONCLUSION AND DEVELOPMENT 
DIRECTION

In this paper, we have extended the LS channel 
estimation algorithm for MIMO information 
system assisted by IRS based on tensor model. 
The KRF and BALS channel estimation 
algorithms are established by efficiently 
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exploiting the tensor structure of the received 
signal. Both algorithms perform separate 
estimation of the transmission channels between 
the BS to the IRS and from the IRS to the UT with 
the passive elements of the IRS. The closed-form 
KRF algorithm has lower complexity but more 
restrictive requirements for training parameter Q.  
While BALS iterative method, although 
computationally more complex, can operate on 
more flexible choices for training parameter Q 
with lower training cost. In this article, we also 
consider the relationship between the system 
parameters to ensure the uniqueness of the 
channel estimates. These constraints are useful 
when designing system channel estimates. Some 
simulation and discussion calculation results, we 
have demonstrated the superior performance of 
KRF and BALS compared with the conventional 
LS estimator, ignoring the Khatri-Rao structure 
of the combined channel matrix. In the proposal 
of this paper, in section 4.3, we give useful 
recommendations for the selection of system 
parameters to ensure the uniqueness of channel 
estimation.

The KRF and BALS channel estimation 
algorithms mentioned in this paper can improve 
the performance by exploiting the knowledge 
of the rank of the estimation matrices, or, using 
compression sensing methods to take advantage 
of the sparse representation of the HBS-IRS and 
GIRS-UT channel matrices. This could be the next 
research direction of interest.

Acknowledgments

The authors would like to thank the 
editor(s) and anonymous reviewers for their 
constructive comments and suggestions that 
have helped to improve the present paper.

REFERENCES 

1.   M. D. Renzo, H. Haas, A. Ghrayeb, S. Sugiura, 
and L. Hanzo. Spatial modulation for 
generalized MIMO: Challenges, opportunities, 
and implementation, Proceedings of the  IEEE, 
2014, 102(1), 56103. 

2. 	 F. Boccardi, R. W. Heath, A. Lozano, T. L. 
Marzetta, and P. Popovski. Five disruptive 
technology directions for 5G, IEEE 
Communications Magazine, 2014,  52(2), 74-80. 

3. 	 P. Yang, M. Di Renzo, Y. Xiao, S. Li, and L. 
Hanzo. Design guidelines for spatial modulation, 
IEEE Communications Surveys & Tutorials, 
2015, 17(1), 6-26. 

4. 	 S. Rangan, T. S. Rappaport, and E. Erkip. 
MillimeterWave cellular wireless networks: 
Potentials and challenges, Proceedings of the 
IEEE, 2014, 102(3), 366-385. 

5. 	 S. Gong, X. Lu, D. T. Hoang, D. Niyato, L. 
Shu, D. I. Kim, and Y.-C. Liang. Toward 
smart wireless communications via intelligent 
reflecting surfaces: A contemporary survey,  
IEEE Communications Surveys & Tutorials, 
2020, 22(4), 2283-2314. 

6. 	 C. Pan, G. Zhou, K. Zhi, S. Hong, T. Wu, Y. Pan,  
H. Ren,  M. D. Renzo,  A. L. Swindlehurst,  
R. Zhang, A. Y. Zhang. An overview of signal 
processing techniques for RIS/IRS-aided 
wireless systems, IEEE Journal of Selected 
Topics Signal Processing, 2022, 16(5), 883-917. 

7. 	 B. Zheng, C. You, W. Mei, and R. Zhang. A survey 
on channel estimation and practical passive 
beamforming design for intelligent reflecting 
surface aided wireless communications, IEEE 
Communications Surveys & Tutorials, 2022,  
24(2), 1035-1071. 

8. 	 Q. Wu and R. Zhang. Towards smart and 
reconfigurable environment: Intelligent 
reflecting surface aided wireless network,  
IEEE Communications Magazine, 2020, 58(1), 
106-112.

9. 	 Q. Wu and R. Zhang. Beamforming optimization 
for wireless network aided by intelligent 
reflecting surface with discrete phase shifts, 
IEEE Transactions on Communications, 2020, 
68(3), 1838-1851. 

10. 	 Y. Song, M. R. A. Khandaker, F. Tariq, and K.-K. 
Wong. Truly intelligent reflecting surface-aided 
secure communication using deep learning,  
IEEE 93rd Vehicular Technology Conference, 
April 2021.



88 Quy Nhon University Journal of Science, 2023, 17(5), 75-89
https://doi.org/10.52111/qnjs.2023.17507

QUY NHON UNIVERSITY
SCIENCEJOURNAL OF

11. 	 L. Dong and H.-M. Wang, Secure MIMO 
transmission via intelligent reflecting surface, 
IEEE Wireless Communication Letters, 2020, 
9(6), 787-790. 

12. 	 A. Taha, M. Alrabeiah, and A. Alkhateeb. 
Enabling large intelligent surfaces with 
compressive sensing and deep learning, IEEE 
Access, 2021, 9, 1-19.

13. 	 T. L. Jensen and E. D. Carvalho. An optimal 
channel estimation scheme for intelligent 
reflecting surfaces based on a minimum variance 
unbiased estimator, ICASSP 2020-2020 IEEE 
International Conference on Acoustics, Speech 
and Signal Processing (ICASSP), 2020. 

14. 	 Z. He and X. Yuan. Cascaded channel estimation 
for large intelligent metasurface assisted massive 
MIMO, IEEE Wireless Communication Letters, 
2020, 9(2), 210-214. 

15. 	 B. Ning, Z. Chen, W. Chen, and Y. Du. Channel 
estimation and transmission for intelligent 
reflecting surface assisted THz communications, 
ICC 2020-2020 IEEE International Conference 
on Communications (ICC), 2020. 

16. 	 Y. Han, W. Tang, X. Li, M. Matthaiou and  
S. Jin. CSI acquisition in RIS-assisted mobile 
communication systems, Informatics and 
Commuter Journal, 2023, 1-15.

17. 	 J. Mirza and B. Ali. Channel estimation method 
and phase shift design for reconfigurable 
intelligent surface assisted MIMO networks, 
IEEE Transactions on Cognitive Communications 
and Networking, 2021, 7(2), 441-451.  

18. 	 S. Xia and Y. Shi. Intelligent reflecting surface 
for massive device connectivity: Joint activity 
detection and channel estimation, ICASSP 
2020-2020 IEEE International Conference 
on Acoustics, Speech and Signal Processing 
(ICASSP), 2020. 

19. 	 Y. Zniyed, R. Boyer, A. L. de Almeida, and G. 
Favier. Tensor train representation of MIMO 
channels using the JIRAFE method, Signal 
Processing, 2020, 171.

20. 	 Y. Zniyed, R. Boyer, A. L. F. Almeida, and 
G. Favier. High-order tensor estimation via 
trains of coupled third-order CP and Tucker 

decompositions, Linear Algebra and Its 
Applications, 2020, 588, 304-307.

21. 	 Y. Zniyed, R. Boyer, A. L. Almeida, and G. 
Favier. A TT-based hierarchical framework 
for decomposing high-order tensors, SIAM 
Journal on Scientific Computing, 2020, 42(2), 
A822-A848. 

22. 	 A. L. F. de Almeida, X. Luciani, A. Stegeman, and 
P. Comon. Confac decomposition approach to 
blind identification of underdetermined mixtures 
based on generating function derivatives, IEEE 
Transactions on Signal Processing, 2012, 
60(11), 5698-5713. 

23. 	 A. L. de Almeida, G. Favier, and J. C. Mota. 
A. L. de Almeida, G. Favier, and J. C. Mota. 
Space time spreading multiplexing for MIMO 
wireless communication systems using the 
PARATUCK-2 tensor model, Signal Processing, 
2009, 89(11), 2103-2116. 

24. 	 W. Freitas, G. Favier, and A. L. F. de Almeida. 
Generalized Khatri-Rao and Kronecker space-
time coding for MIMO relay systems with 
closed-form semi-blind receivers, Signal 
Processing, 2018, 151, 19-31.

25. 	 B. Sokal, A. L. de Almeida, and M. Haardt. 
Semi-blind receivers for MIMO multi-relaying 
systems via rank-one tensor approximations, 
Signal Processing, 2020, 166. 

26. 	 D. C. Araujo, A. L. F. de Almeida, J. P. C. L. Da 
Costa, and R. T. de Sousa. Tensor-based channel 
estimation for massive MIMO-OFDM systems, 
IEEE Access, 2019, 7, 42133-42147.

27. 	 P. R. B. Gomes, A. L. F. de Almeida, J. P. C. 
L. da Costa, and R. T. de Sousa Jr. Joint DL 
and UL channel estimation for millimeter wave 
MIMO systems using tensor modeling, Wireless 
Communications and Mobile Computing, 2019, 
1-13.

28. 	 V. D. Nguyen, K. A. Meraim,  N. L. Trung. 
Parallelizable PARAFAC decomposition of 
3-way tensors, Proceedings of European Signal 
Processing Conference (EUSIPCO) IEEE, 2015. 

29. 	 T. G. Kolda and B. W. Bader. Tensor 
decompositions and applications, SIAM Review, 
2009,  51(3), 455-500.



Quy Nhon University Journal of Science, 2023, 17(5), 75-89 89
https://doi.org/10.52111/qnjs.2023.17507

QUY NHON UNIVERSITY
SCIENCEJOURNAL OF

30. 	 P. Comon, X. Luciani, and A. L. F. de Almeida. 
Tensor decompositions, alternating least squares 
and other tales,  Journal of Chemometrics, 2009, 
23(7), 393-405.

31. 	 A. L. F. de Almeida, G. Favier, J. P. C. L. 
da Costa, and J. C. M. Mota. Overview of 
tensor decompositions with applications to 
communications, Signals and Images: Advances 
and Results in Speech, Estimation, Compression, 
Recognition, Filtering, and Processing,  2016, 
12, 325-356. 

32. 	 A. Y. Kibangou and G. Favier. Non-iterative 
solution for PARAFAC with a toeplitz matrix 
factor, 2009 17th European Signal Processing 
Conference, 2009.

33. 	 F. Roemer and M. Haardt. Tensor-based channel 
estimation and iterative refinements for two-
way relaying with multiple antennas and spatial 
reuse, IEEE Transactions on Signal Process, 
2010, 58(11), 5720-5735.  

34. 	 R. Bro. Multi-way analysis in the food industry: 
Models, algorithms & applications, Ph.D. 
dissertation, University of Amsterdam, 1998. 

35. 	 A. Stegeman and N. D. Sidiropoulos. On 
kruskal’s uniqueness condition for the 
PARAFAC decomposition, Linear Algebra and 
Its Applications, 2007, 420(2), 540-552. 

36. 	 N. D. Sidiropoulos and R. Bro. On the uniqueness 
of multilinear decomposition of n-way arrays, 
Journal of Chemometrics, 2000, 14(3), 229-239. 

37. 	 R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, 
W. Roh, and A. M. Sayeed. An overview of 
signal processing techniques for millimeter 
wave MIMO systems, IEEE Journal of Selected 
Topics in Signal Processing, 2016, 10(3), 436-453.

38. 	 B. Li, Z. Zhang, Z. Hu. Channel estimation 
for reconfigurable intelligent surface-assisted 
multiuser mmWave MIMO system in the 
presence of array blockage, Transactions on 
Emerging Telecommunications Technologies, 
2021, 32.

39. 	 G. T. de Araujo and A. L. F. de Almeida. 
PARAFAC-based channel estimation for 
intelligent reflective surface assisted MIMO 
system, IEEE 11th Sensor Array and Multichannel 
Signal Processing Workshop (SAM), 2020, 1-5. 

40. 	 C. You, B. Zheng, and R. Zhang. Intelligent 
reflecting surface with discrete phase shifts: 
Channel estimation and passive beamforming, 
ICC 2020-2020 IEEE International Conference 
on Communications (ICC), 2020.


