
119
https://doi.org/10.52111/qnjs.2026.20111

Tạp chí Khoa học Trường Đại học Quy Nhơn, 2026, 20(1), 119-133

Mô hình dự báo và phát hiện các yếu tố gây ra mưa
sử dụng thuật toán học sâu

Hồ Văn Lâm1,*, Hoàng Thanh Minh2, Lê Thị Phương Thảo3

1Khoa Công nghệ Thông tin, Trường Đại học Quy Nhơn, Việt Nam
2Đài Khí tượng Thủy văn tỉnh Gia Lai, Việt Nam

3Công ty TMA, Gia Lai, Việt Nam

Ngày nhận bài: 22/09/2025; Ngày sửa bài: 19/10/2025;
Ngày nhận đăng: 22/10/2025; Ngày xuất bản: 28/02/2026

TÓM TẮT

Nghiên cứu này sử dụng các thuật toán học sâu để xây dựng mô hình dự báo trên các tập dữ liệu thực tế có
dấu hiệu mưa, nhằm dự đoán có mưa hay không tại một thời điểm cụ thể cũng như phân tích cách mưa xuất hiện
dựa trên các yếu tố liên quan. Nghiên cứu cũng hướng đến hỗ trợ dự báo chính xác lượng mưa rơi xuống tại một
địa điểm vào một thời điểm xác định. Trong nghiên cứu, chúng tôi xây dựng mô hình học sâu nhằm hỗ trợ dự báo
thời tiết, đặc biệt là dự đoán chính xác lượng mưa - một bài toán luôn thách thức không chỉ đối với các cơ quan
dự báo tại Việt Nam mà còn đối với các hệ thống dự báo tiên tiến trên thế giới. Sử dụng tập dữ liệu thu thập được,
chúng tôi tiến hành mô tả các thuộc tính của các trường dữ liệu, cũng như phân tích các tham số có tương quan đến
hiện tượng mưa. Sau đó, chúng tôi áp dụng thuật toán học sâu để xây dựng mô hình dự đoán khả năng có mưa có
thể xảy ra hay không và xảy ra như thế nào? Các kết quả thu được có thể được ứng dụng trong thực tế để dự đoán
lượng mưa tại một địa điểm và thời điểm cụ thể từ dữ liệu đầu vào là dữ liệu dấu hiệu mưa được trích xuất từ cơ
sở dữ liệu dự báo thời tiết. Từ đó, nghiên cứu mở ra tiềm năng ứng dụng trí tuệ nhân tạo trong lĩnh vực dự báo khí
tượng nhằm nâng cao độ chính xác và giảm thiểu rủi ro do thời tiết cực đoan gây ra.

Từ khóa: Mô hình dự báo mưa, thuật toán LSTM, thuật toán RNN, thuật toán GRU, thuật toán học sâu.

*Tác giả liên hệ chính.
Email: hovanlam@qnu.edu.vn

TRƯỜNG ĐẠI HỌC QUY NHƠN
KHOA HỌCTẠP CHÍ

120 Quy Nhon University Journal of Science, 2026, 20(1), 119-133
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

Predicting model and detecting factors causing rainfall
using deep learning

Ho Van Lam1,*, Hoang Thanh Minh2, Le Thi Phuong Thao3

1Faculty of Information Technology, Quy Nhon University, Vietnam
2Gia Lai Provincial Hydro-Meteorological Station, Vietnam

3TMA Company, Gia Lai, Vietnam

Received: 22/09/2025; Revised: 19/10/2025;
Accepted: 22/10/2025; Published: 28/02/2026

ABSTRACT

This study aims to employ deep learning algorithms to construct predictive models using real-world
datasets containing indicators of rainfall. The objective is to determine the occurrence of rainfall at a specific point
in time and to analyze the underlying factors contributing to its onset. Furthermore, the research is directed toward
improving the accuracy of quantitative rainfall prediction for a given location and time. This study has developed
a deep learning-based framework for weather forecasting with a particular focus on accurate rainfall prediction -
a task that remains highly challenging not only for meteorological agencies in Vietnam but also for state-of-the-
art forecasting systems worldwide. Using the collected dataset, we conducted descriptive statistical analyses to
characterize its properties and investigated the parameters exhibiting correlations with rainfall events. Based on
these findings, deep learning algorithms were applied to develop a classification model capable of predicting
the probability of rainfall occurrence. The experimental results demonstrate that the proposed model can be
applied to operational scenarios for forecasting rainfall at specific locations and times, utilizing rainfall indicators
extracted from meteorological forecast databases. The outcomes of this research highlight the potential of artificial
intelligence techniques in meteorological applications, offering the prospect of enhanced prediction accuracy and
reduced risks associated with extreme weather phenomena.

Keywords: Rainfall prediction model, LSTM algorithm, RNN algorithm, GRU algorithm, deep learning algorithm.

*Corresponding author.
Email: hovanlam@qnu.edu.vn

1. INTRODUCTION

One of the critical inputs for hydrological
computation models is rainfall forecasting.
Rainfall prediction is an inherently complex task,
especially when forecasting for specific locations
across different months and seasons. To develop
a low-cost yet effective method that delivers
acceptable forecasting accuracy, we employed
machine learning techniques to build a daily
rainfall forecasting model. Unlike traditional
approaches, this study utilized datasets collected
from monitoring stations, combining observed

attributes with ERA5 reanalysis data, and applied
suitable deep learning algorithms to construct
models for rainfall prediction and related
influencing factors. In this paper, we present a
rainfall forecasting model developed using 16
years of data collected from monitoring stations
and ERA5 reanalysis datasets. The forecast
outputs from this model can support decision-
making in operational forecasting and other
related tasks at monitoring station locations.

Artificial Intelligence (AI) is playing an
increasingly important role in meteorology and

Quy Nhon University Journal of Science, 2026, 20(1), 119-133 121
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

hydrology due to its capability to process large
volumes of data from observation stations,
forecasts, and historical weather records. Deep
Learning, a subset of AI, employs multi-layer
neural networks to learn complex patterns from
data and construct predictive models.

In this study, we developed deep learning
models based on the Long Short-Term Memory
(LSTM) architecture to predict the occurrence
and probability of rainfall. Model optimization
was performed through the analysis of evaluation
metrics such as the confusion matrix, ROC-AUC
curve, and Precision–Recall curve, alongside
the identification of key variables influencing
predictive performance.

We also integrated meteorological data
from observation stations with deep learning
algorithms to construct a rainfall forecasting model
that can assist meteorologists in their forecasting
tasks and be transferable to other stations
when necessary. By combining meteorological
expertise with observational datasets, the model
can analyze factors influencing rainfall based on
meteorological parameters, thereby providing
predictions on rainfall occurrence and the
expected rainfall intensity.

2. RAIN FORECASTING PROBLEMS

2.1. Rain forecasting problem

Currently, accurately predicting rainfall at a
specific location and time remains a significant
challenge for meteorological agencies worldwide.

Rainfall is essentially the result of
atmospheric processes in which water vapor
in the atmosphere undergoes a phase change
(condensation) into solid or liquid forms such as
water, ice, or snow and falls to the ground under
the influence of gravity. During the process
of condensation and descent to the ground,
raindrops are affected by horizontal air currents.
Due to differences in environmental conditions,
the raindrops themselves may partially evaporate
during their fall.1

In recent years, meteorology and
hydrology have made significant progress in
forecasting large-scale heavy rainfall events.

Such phenomena can be predicted 2–3 days in
advance with an accuracy of about 70%, and
in some cases, early warnings can be issued
5-7 days ahead. Forecast information for large-
scale heavy rainfall events is generally reliable
regarding the timing of rainfall onset, the
affected areas, and the ending time of the event.

Early forecasting of large-scale heavy
rainfall plays a crucial role in supporting flood,
flash flood, landslide, and inundation warnings.
These alerts are communicated to authorities and
the public to enable proactive response planning
and minimize damage.

However, when it comes to quantitative
rainfall forecasts (for specific locations and
times), current numerical weather prediction
technology still faces many limitations. Notably,
there are constraints in spatial resolution due
to the use of numerous empirical parameters
in physical models, as well as a shortage of
observational input data particularly over oceans
and at higher atmospheric layers.

Estimates indicate that the reliability of
point-based quantitative forecasts within a 1–3
day range is only about 40–60% for light and
moderate rainfall events (less than 16 mm/day).

In addition to improving the physical
modeling capabilities of forecasting systems, the
meteorological sector also focuses on enhancing
the training and expertise of forecasters especially
in utilizing intelligent decision-support systems.
This allows for the integration of various
types of observations and forecast products,
enabling fine-tuning of rainfall and temperature
predictions, as well as leveraging ensemble
forecasting and other decision-support tools.2,3

2.2. Rainfall database

In this study, we use data from the Quy Nhon
Meteorological Station a Class I meteorological
station with the international code “48870”. This
station is internationally recognized as a high-
accuracy data source and is frequently used in
weather forecasting models.

The dataset spans from 2009 to 2024 and
includes hourly observational variables such

122 Quy Nhon University Journal of Science, 2026, 20(1), 119-133
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

as temperature, humidity, station pressure, and
total rainfall. In addition, reanalysis data from
ERA5 is incorporated, comprising 54 variables,
primarily related to temperature, humidity,
and wind vectors in the u and v directions at
atmospheric pressure levels ranging from 950 hPa
to 300 hPa. All data are organized as time series
by hour, day, and month.

The objective of using these datasets is
to explore and analyze the relationship between
rainfall and other meteorological factors in the
Quy Nhon area. Rainfall classification in the
dataset follows the standards of the Vietnam
Meteorology and Hydrology sector as follows:

•	No rain = 0mm/day
•	Rain < 16mm/day
•	16mm/day ≤ Moderate rain < 50mm/day
•	50mm/day ≤ Heavy rain < 100mm/day
•	Very heavy rain ≥ 100mm/day

Statistics show that “No rain” has
the highest occurrence with 86601 cases,
followed by “Rain” with 40752 cases, and then
“Moderate rain” with 9157 cases. “Heavy rain”
is significantly less frequent with 2476 cases,
and finally, “Very heavy rain” has the fewest
occurrences with 1192 cases.

Figure 1. The distribution of rainfall categories in the
dataset.

From Figure 1, it is evident that among
100 sampled values, there are 62 “No rain”
cases, 29 “Rain” cases, 6 “Moderate rain” cases,
2 “Heavy rain” cases, and only 1 “Very heavy
rain” case. This indicates an uneven distribution
of data among rainfall categories, with heavier
rainfall events occurring less frequently.

Figure 2. The distribution of rainfall categories by month.

Quy Nhon University Journal of Science, 2026, 20(1), 119-133 123
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

Based on Figure 2, heavy and very heavy
rainfall events are primarily concentrated between
September and December, with a pronounced
increase in their occurrence during September,
October, and November. This period corresponds
to the region’s main rainy season, when active
weather systems deliver abundant precipitation.
In these months, not only does the number of
rainfall events rise significantly, but rainfall
intensity also increases, contributing substantially
to the region’s annual total precipitation.

Specifically, the number of moderate,
heavy, and very heavy rainfall events increases
sharply from September to December, whereas
the rest of the year is dominated by no rain or rain
events. This highlights a clear seasonal pattern in
rainfall distribution within the study area.

As shown in Figure 3, rainfall events
occur most frequently in the temperature

range of 24°C to 30°C, with particularly high
concentrations in the 24–26°C and 26–28°C
intervals. In these temperature ranges, the total
number of rainfall samples (from light to very
heavy) accounts for the majority compared to
other temperature groups. Notably, very heavy
rainfall events almost exclusively occur within
the 24-26°C and 26-28°C intervals, indicating
that this temperature range is the most favorable
for extreme rainfall. Conversely, at lower
temperatures (< 22°C) or higher temperatures
(> 30°C), the frequency of rainfall events
especially heavy and very heavy declines
sharply, with almost no extreme rainfall observed
above 30°C. This suggests that samples with
excessively low or high temperatures are less
likely to be associated with rainfall, particularly
intense rainfall events.

Figure 3. The distribution of rainfall types across temperature groups.

124 Quy Nhon University Journal of Science, 2026, 20(1), 119-133
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

Figure 4 shows that the frequency of
rainfall events (from light rain to very heavy
rain) increases with higher humidity levels. In
the 80-90% humidity range, the total number of
rainy samples is the highest, with light rain and
moderate rain dominating. This indicates that
this humidity band is ideal for rain formation.
The 70-80% range comes next, also showing
a relatively large number of rainy samples,
reflecting the clear trend that higher humidity is
associated with a higher likelihood of rain.

Notably, heavy and very heavy rainfall
events occur mainly in the two highest humidity
groups 80–90% and >90% and are almost absent

Figure 4. Distribution of rainfall types by humidity group.

in lower humidity groups. This suggests that
extreme rainfall events often happen when the
air holds a very high moisture content, providing
favorable conditions for intense atmospheric
condensation. In contrast, humidity groups
below 60% and 60-70% record relatively few
rainy samples, with heavy and very heavy
rain almost non-existent, indicating that drier
environments have little potential to produce
rainfall, especially extreme events. Moreover,
the >90% humidity group is the only one with
the highest number of very heavy rain samples
in the entire chart, emphasizing the role of
extreme humidity in triggering severe weather
phenomena.

Quy Nhon University Journal of Science, 2026, 20(1), 119-133 125
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

number of rainy samples is very low, and heavy
rainfall events are almost absent, indicating that
both very low and very high pressure are not
ideal environments for rain. The 1015-1020 mb
group still maintains a considerable number
of rainy samples but shows a slight decrease
compared to the preceding range, suggesting that
when pressure exceeds 1015 mb, the likelihood
of rain begins to decline. Similarly, the 1020-
1025 mb and >1025 mb groups are dominated
by non-rain samples, reflecting a more stable
atmosphere with fewer conditions supporting
rainfall development.

In Figure 5, rainfall samples are
concentrated mainly in the pressure range of
1005-1015 mb, with the 1005-1010 mb and 1010-
1015 mb groups clearly dominating. This range
not only shows a high number of rainy samples
but also a noticeable increase in strong rainfall
events, reflected in the frequent appearance of
orange and red bars representing heavy and very
heavy rain. This suggests that this pressure range
is favorable for atmospheric conditions that lead
to the formation and growth of convective rain
clouds.

On the other hand, at the extremes of
pressure specifically <1000 mb and >1025 mb the

Figure 5. Distribution of rainfall types by pressure group.

126 Quy Nhon University Journal of Science, 2026, 20(1), 119-133
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

Because the features in the dataset are
independent, analyzing their correlations is
essential to assess both their interrelationships
and their relationship with the target variable
in this case, the likelihood of rain the next day
(rain_tomorrow).

Figure 6. Correlation matrix between factors.

From Figure 6, we observe that humidity,
month, and rainfall all show positive correlations
with the probability of rain on the following
day, with previous-day rainfall exhibiting the
strongest positive correlation with next-day
rain. In contrast, factors such as temperature
have a negative correlation with the likelihood
of rain. Notably, atmospheric pressure shows a
very weak correlation with next-day rain, with a
coefficient of only 0.09.

3. ALGORITHMS AND PREDICTION
MODELS

3.1. Deep learning algorithms

Deep learning is an important branch of artificial
intelligence that focuses on building and training
multi-layer neural networks to automatically
learn complex features from data.

Unlike traditional machine learning
methods, deep learning can extract features
directly from raw data, reducing dependence on
manual preprocessing steps while effectively
capturing complex nonlinear relationships
between input variables.

Thanks to these capabilities, deep learning
has become a powerful tool in fields that require
processing large and complex datasets, such as
computer vision, natural language processing,
and especially time series forecasting in
meteorology and hydrology.5

In the context of weather forecasting and
hydrometeorological phenomena, deep learning
algorithms are widely applied to predict variables
related to rainfall, temperature, humidity,
pressure, and other meteorological parameters.

Sequential neural networks such as RNNs
(Recurrent Neural Networks) allow the model
to retain information from previous time steps,
while more advanced variants such as LSTM
(Long Short-Term Memory) and GRU (Gated
Recurrent Unit) are specifically designed to
address the vanishing gradient problem, enabling
the learning of long-term dependencies in time
series data.6

The choice of an appropriate deep learning
algorithm depends on the specific characteristics
of the problem and the data.

For example, with datasets containing
long time series and requiring the capture of
complex relationships among meteorological
variables, LSTM is often preferred for its long-
term memory capabilities, while GRU can be
used when reducing the number of parameters
and speeding up training is a priority. Thus, deep
learning not only offers more accurate forecasting
but also provides flexibility in uncovering hidden
features in hydrometeorological data.

RNN Algorithm

RNN (Recurrent Neural Network) is a
neural network architecture specifically designed
to process time series data, where the current
value depends on previous values. Unlike
traditional neural networks, RNNs have the
ability to retain information from previous time
steps through a hidden state, enabling the model
to predict future values based on historical data.5

Quy Nhon University Journal of Science, 2026, 20(1), 119-133 127
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

RNN Training Algorithm: RNNs are
trained using Backpropagation Through Time
(BPTT), an extension of backpropagation, to
update weights based on the gradient of the
loss function with respect to the entire time
sequence:4

Step 1: Weight Initialization - Randomly
initialize the weights Wh (hidden state weights),
Wx (input weights), Wy (output weights)
along with biases b (hidden state bias) and c
(output bias).

Step 2: Forward pass - Iterate through
the entire time sequence. At each time step t,
compute the hidden state ht based on the current
input xt and the previous hidden state ht-1
according to the formula:

Then, compute the predicted output yt
from the hidden state ht:

Step 3: Compute the loss function -
Use an appropriate loss function based on the
predicted output yt and the actual label yt

Step 4: Backward pass – Backpropagation
of the error from the final time steps to the initial
ones, computing the gradient of the loss function
with respect to the weights Wx, Wh, Wy, b, c.

Step 5: Update weights - Use an
optimization algorithm to update the weights
based on the computed gradients, minimizing
the loss function.

Step 6: Repeat - The process of forward
pass, loss calculation, backward pass, and weight
updates is repeated over many epochs until the
model converges or meets the early stopping
criterion.

Step 7: Prediction - Once the model is
trained, the RNN can take a new input sequence
and continuously compute the hidden states to
predict the corresponding output sequence.

LSTM Algorithm

LSTM (Long Short-Term Memory) is
an improved recurrent neural network (RNN)
architecture designed to handle long time-
series data and overcome the vanishing gradient
problem often found in traditional RNNs.
LSTM can retain long-term information thanks
to its gating mechanism, which controls which
information is kept, updated, or discarded in the
cell state.5,7

LSTM training algorithm: LSTM is also
trained using Backpropagation Through Time, an
extension of backpropagation, to update weights
based on the gradient of the loss function over
the entire time series.

Step 1: Initialize weights and states -
Randomly initialize the weights for the forget
gate Wf , input gate Wi, output gate Wo​, cell
input Wc along with the biases bf, bi, bo, bc​. The
hidden state h0 and the cell state C0 ​​are usually
initialized as zero vectors.

Step 2: Forward pass - Iterate through
the entire time series. At each time step t:
Forget gate:

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Step 3: Compute the loss function -
Use an appropriate loss function based on the
predicted output yt and the actual label.

7

LSTM training algorithm: LSTM is also
trained using Backpropagation Through Time, an
extension of backpropagation, to update weights
based on the gradient of the loss function over the
entire time series.

Step 1: Initialize weights and states -
Randomly initialize the weights for the forget gate
𝑊𝑊𝑓𝑓, input gate 𝑊𝑊𝑖𝑖, output gate 𝑊𝑊𝑜𝑜, cell input 𝑊𝑊𝑐𝑐
along with the biases 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. The hidden
state ℎ0 and the cell state 𝐶𝐶0 are usually initialized
as zero vectors.

Step 2: Forward pass - Iterate through the
entire time series. At each time step 𝑡𝑡:
Forget gate:

𝑓𝑓𝑡𝑡 = σ(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (3)

Input gate:

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (4)

Cell input:

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (5)

Update cell state:

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡 (6)

Output gate:

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (7)

Hidden state:

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) (8)

Output prediction (if needed):

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡) (9)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output 𝑦𝑦𝑡𝑡 and the actual label.

Step 4: Backward pass – Backpropagation
of errors from the last time step to the first
(Backpropagation Through Time), computing the
gradients of the loss with respect to all weights
𝑊𝑊𝑓𝑓 ,𝑊𝑊𝑖𝑖,𝑊𝑊𝑜𝑜,𝑊𝑊𝑐𝑐 , 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐.

Step 5: Update weights - Use an
optimization algorithm to update weights based on
computed gradients, minimizing the loss function.

Step 6: Repeat - Perform forward pass, loss
computation, backward pass, and weight updates
over many epochs until the model converges or
meets early stopping criteria.

Step 7: Prediction - Once trained, the
LSTM can take a new input sequence and compute
hidden states sequentially to predict the
corresponding output sequence.

GRU Algorithm

GRU (Gated Recurrent Unit) is an
improved recurrent neural network architecture,
similar to LSTM but with a simpler structure. It
combines certain gates to reduce the number of
parameters while still maintaining the ability to
remember long-term information. GRU has two
main gates: the update gate and the reset gate,
which control which information should be
retained or discarded in the hidden state.

The GRU training algorithm also uses
Backpropagation Through Time to update weights
based on the gradients of the loss function across
the entire time sequence.

Step 1: Initialize weights and states -
Randomly initialize the weights for the update
gate 𝑊𝑊𝑧𝑧, reset gate 𝑊𝑊𝑟𝑟, candidate state 𝑊𝑊ℎ along
with the biases 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. The initial hidden state
h0 is usually set as a zero vector.

Step 2: Forward pass - Iterate through the
entire time sequence. At each time step 𝑡𝑡:

• Update gate:

𝑧𝑧𝑡𝑡 = σ(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑧𝑧) (10)

• Reset gate:

𝑟𝑟𝑡𝑡 = σ(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑟𝑟) (11)

• Candidate hidden state:

ℎ𝑡̃𝑡 = tanh(𝑊𝑊ℎ ⋅ [𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏ℎ) (12)

• New hidden state:

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ∗ ℎ𝑡̃𝑡 (13)

• Output prediction (if needed):

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡) (14)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output 𝑦𝑦𝑡𝑡 and the actual labels.

Step 4: Backward pass – Backpropagation
of the error from the last time steps to the first,
computing the gradients of the loss function with
respect to all weights 𝑊𝑊𝑧𝑧,𝑊𝑊𝑟𝑟 ,𝑊𝑊ℎ ,𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ.

Step 5: Update weights - Use an
optimization algorithm to update the weights
based on the computed gradients, minimizing the
loss function.

Step 6: Repeat - The process of forward
pass, loss computation, backward pass, and weight
update is repeated for many epochs until the model
converges or meets an early stopping criterion.

Step 7: Prediction - Once trained, the GRU
can take a new input sequence and compute the

6

3. ALGORITHMS AND PREDICTION
MODELS

3.1. Deep learning algorithms

Deep learning is an important branch of artificial
intelligence that focuses on building and training
multi-layer neural networks to automatically learn
complex features from data.

Unlike traditional machine learning
methods, deep learning can extract features
directly from raw data, reducing dependence on
manual preprocessing steps while effectively
capturing complex nonlinear relationships
between input variables.

Thanks to these capabilities, deep learning
has become a powerful tool in fields that require
processing large and complex datasets, such as
computer vision, natural language processing, and
especially time series forecasting in meteorology
and hydrology.5

In the context of weather forecasting and
hydrometeorological phenomena, deep learning
algorithms are widely applied to predict variables
related to rainfall, temperature, humidity,
pressure, and other meteorological parameters.

Sequential neural networks such as RNNs
(Recurrent Neural Networks) allow the model to
retain information from previous time steps, while
more advanced variants such as LSTM (Long
Short-Term Memory) and GRU (Gated Recurrent
Unit) are specifically designed to address the
vanishing gradient problem, enabling the learning
of long-term dependencies in time series data.6

The choice of an appropriate deep learning
algorithm depends on the specific characteristics
of the problem and the data.

For example, with datasets containing long
time series and requiring the capture of complex
relationships among meteorological variables,
LSTM is often preferred for its long-term memory
capabilities, while GRU can be used when
reducing the number of parameters and speeding
up training is a priority. Thus, deep learning not
only offers more accurate forecasting but also
provides flexibility in uncovering hidden features
in hydrometeorological data.

RNN Algorithm

RNN (Recurrent Neural Network) is a
neural network architecture specifically designed
to process time series data, where the current value
depends on previous values. Unlike traditional
neural networks, RNNs have the ability to retain
information from previous time steps through a

hidden state, enabling the model to predict future
values based on historical data.5

RNN Training Algorithm: RNNs are
trained using Backpropagation Through Time
(BPTT), an extension of backpropagation, to
update weights based on the gradient of the loss
function with respect to the entire time sequence:4

Step 1: Weight Initialization - Randomly
initialize the weights 𝑊𝑊ℎ (hidden state weights),
𝑊𝑊𝑥𝑥 (input weights), 𝑊𝑊𝑦𝑦 (output weights) along
with biases 𝑏𝑏 (hidden state bias) and 𝑐𝑐 (output
bias).

Step 2: Forward pass - Iterate through the
entire time sequence. At each time step 𝑡𝑡, compute
the hidden state ℎ𝑡𝑡 based on the current input 𝑥𝑥𝑡𝑡
and the previous hidden state ℎ𝑡𝑡−1 according to
the formula:

ℎ𝑡𝑡 = tanh(𝑊𝑊𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑏𝑏) (1)

Then, compute the predicted output 𝑦𝑦𝑡𝑡 from the
hidden state ℎ𝑡𝑡:

𝑦𝑦𝑡𝑡 = softmax(𝑊𝑊𝑦𝑦ℎ𝑡𝑡 + 𝑐𝑐) (2)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output 𝑦𝑦𝑡𝑡 and the actual label 𝑦𝑦𝑡𝑡

Step 4: Backward pass – Backpropagation
of the error from the final time steps to the initial
ones, computing the gradient of the loss function
with respect to the weights 𝑊𝑊𝑥𝑥 ,𝑊𝑊ℎ ,𝑊𝑊𝑦𝑦, 𝑏𝑏, 𝑐𝑐.

Step 5: Update weights - Use an
optimization algorithm to update the weights
based on the computed gradients, minimizing the
loss function.

Step 6: Repeat - The process of forward
pass, loss calculation, backward pass, and weight
updates is repeated over many epochs until the
model converges or meets the early stopping
criterion.

Step 7: Prediction - Once the model is
trained, the RNN can take a new input sequence
and continuously compute the hidden states to
predict the corresponding output sequence.

LSTM Algorithm

LSTM (Long Short-Term Memory) is an
improved recurrent neural network (RNN)
architecture designed to handle long time-series
data and overcome the vanishing gradient problem
often found in traditional RNNs. LSTM can retain
long-term information thanks to its gating
mechanism, which controls which information is
kept, updated, or discarded in the cell state.5,7

6

3. ALGORITHMS AND PREDICTION
MODELS

3.1. Deep learning algorithms

Deep learning is an important branch of artificial
intelligence that focuses on building and training
multi-layer neural networks to automatically learn
complex features from data.

Unlike traditional machine learning
methods, deep learning can extract features
directly from raw data, reducing dependence on
manual preprocessing steps while effectively
capturing complex nonlinear relationships
between input variables.

Thanks to these capabilities, deep learning
has become a powerful tool in fields that require
processing large and complex datasets, such as
computer vision, natural language processing, and
especially time series forecasting in meteorology
and hydrology.5

In the context of weather forecasting and
hydrometeorological phenomena, deep learning
algorithms are widely applied to predict variables
related to rainfall, temperature, humidity,
pressure, and other meteorological parameters.

Sequential neural networks such as RNNs
(Recurrent Neural Networks) allow the model to
retain information from previous time steps, while
more advanced variants such as LSTM (Long
Short-Term Memory) and GRU (Gated Recurrent
Unit) are specifically designed to address the
vanishing gradient problem, enabling the learning
of long-term dependencies in time series data.6

The choice of an appropriate deep learning
algorithm depends on the specific characteristics
of the problem and the data.

For example, with datasets containing long
time series and requiring the capture of complex
relationships among meteorological variables,
LSTM is often preferred for its long-term memory
capabilities, while GRU can be used when
reducing the number of parameters and speeding
up training is a priority. Thus, deep learning not
only offers more accurate forecasting but also
provides flexibility in uncovering hidden features
in hydrometeorological data.

RNN Algorithm

RNN (Recurrent Neural Network) is a
neural network architecture specifically designed
to process time series data, where the current value
depends on previous values. Unlike traditional
neural networks, RNNs have the ability to retain
information from previous time steps through a

hidden state, enabling the model to predict future
values based on historical data.5

RNN Training Algorithm: RNNs are
trained using Backpropagation Through Time
(BPTT), an extension of backpropagation, to
update weights based on the gradient of the loss
function with respect to the entire time sequence:4

Step 1: Weight Initialization - Randomly
initialize the weights 𝑊𝑊ℎ (hidden state weights),
𝑊𝑊𝑥𝑥 (input weights), 𝑊𝑊𝑦𝑦 (output weights) along
with biases 𝑏𝑏 (hidden state bias) and 𝑐𝑐 (output
bias).

Step 2: Forward pass - Iterate through the
entire time sequence. At each time step 𝑡𝑡, compute
the hidden state ℎ𝑡𝑡 based on the current input 𝑥𝑥𝑡𝑡
and the previous hidden state ℎ𝑡𝑡−1 according to
the formula:

ℎ𝑡𝑡 = tanh(𝑊𝑊𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑏𝑏) (1)

Then, compute the predicted output 𝑦𝑦𝑡𝑡 from the
hidden state ℎ𝑡𝑡:

𝑦𝑦𝑡𝑡 = softmax(𝑊𝑊𝑦𝑦ℎ𝑡𝑡 + 𝑐𝑐) (2)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output 𝑦𝑦𝑡𝑡 and the actual label 𝑦𝑦𝑡𝑡

Step 4: Backward pass – Backpropagation
of the error from the final time steps to the initial
ones, computing the gradient of the loss function
with respect to the weights 𝑊𝑊𝑥𝑥,𝑊𝑊ℎ,𝑊𝑊𝑦𝑦, 𝑏𝑏, 𝑐𝑐.

Step 5: Update weights - Use an
optimization algorithm to update the weights
based on the computed gradients, minimizing the
loss function.

Step 6: Repeat - The process of forward
pass, loss calculation, backward pass, and weight
updates is repeated over many epochs until the
model converges or meets the early stopping
criterion.

Step 7: Prediction - Once the model is
trained, the RNN can take a new input sequence
and continuously compute the hidden states to
predict the corresponding output sequence.

LSTM Algorithm

LSTM (Long Short-Term Memory) is an
improved recurrent neural network (RNN)
architecture designed to handle long time-series
data and overcome the vanishing gradient problem
often found in traditional RNNs. LSTM can retain
long-term information thanks to its gating
mechanism, which controls which information is
kept, updated, or discarded in the cell state.5,7

128 Quy Nhon University Journal of Science, 2026, 20(1), 119-133
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

Step 4: Backward pass – Backpropagation
of errors from the last time step to the first
(Backpropagation Through Time), computing
the gradients of the loss with respect to all
weights Wf , Wi, Wo, Wc , bf, bi, bo, bc.

Step 5: Update weights - Use an
optimization algorithm to update weights based
on computed gradients, minimizing the loss
function.

Step 6: Repeat - Perform forward pass,
loss computation, backward pass, and weight
updates over many epochs until the model
converges or meets early stopping criteria.

Step 7: Prediction - Once trained, the
LSTM can take a new input sequence and
compute hidden states sequentially to predict the
corresponding output sequence.

GRU Algorithm

GRU (Gated Recurrent Unit) is an
improved recurrent neural network architecture,
similar to LSTM but with a simpler structure. It
combines certain gates to reduce the number of
parameters while still maintaining the ability to
remember long-term information. GRU has two
main gates: the update gate and the reset gate,
which control which information should be
retained or discarded in the hidden state.

The GRU training algorithm also uses
Backpropagation Through Time to update
weights based on the gradients of the loss
function across the entire time sequence.

Step 1: Initialize weights and states -
Randomly initialize the weights for the update
gate Wz​, reset gate Wr, candidate state Wh along
with the biases bz, br, bh. The initial hidden state
h0 ​ is usually set as a zero vector.

Step 2: Forward pass - Iterate through
the entire time sequence. At each time step t:

•	 Update gate:

•	 Reset gate:

•	 Candidate hidden state:

•	 New hidden state:

•	 Output prediction (if needed):

Step 3: Compute the loss function -
Use an appropriate loss function based on the
predicted output yt ​and the actual labels.

Step 4: Backward pass – Backpropagation
of the error from the last time steps to the first,
computing the gradients of the loss function with
respect to all weights Wz, Wr, Wh, bz , br, bh.

Step 5: Update weights - Use an
optimization algorithm to update the weights
based on the computed gradients, minimizing
the loss function.

Step 6: Repeat - The process of forward
pass, loss computation, backward pass, and
weight update is repeated for many epochs until
the model converges or meets an early stopping
criterion.

Step 7: Prediction - Once trained, the
GRU can take a new input sequence and
compute the hidden state continuously to predict
the corresponding output sequence.

3.2. Prediction models using deep learning

The dataset from the Quy Nhon Meteorological
Station, after being cleaned and encoded to
convert categorical features into numerical
values, can be used as input for deep learning
models.The objective is to train and compare the
performance of three deep learning algorithms:
LSTM, RNN, and GRU. These models are highly
suitable for time series data and have proven
effective in weather forecasting tasks thanks to
their ability to capture temporal dependencies,
automatically extract features from raw data, and
model complex nonlinear relationships between
variables.4,9

The processed dataset was divided into
two subsets, with 80% allocated for training

7

LSTM training algorithm: LSTM is also
trained using Backpropagation Through Time, an
extension of backpropagation, to update weights
based on the gradient of the loss function over the
entire time series.

Step 1: Initialize weights and states -
Randomly initialize the weights for the forget gate
𝑊𝑊𝑓𝑓, input gate 𝑊𝑊𝑖𝑖, output gate 𝑊𝑊𝑜𝑜, cell input 𝑊𝑊𝑐𝑐
along with the biases 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. The hidden
state ℎ0 and the cell state 𝐶𝐶0 are usually initialized
as zero vectors.

Step 2: Forward pass - Iterate through the
entire time series. At each time step 𝑡𝑡:
Forget gate:

𝑓𝑓𝑡𝑡 = σ(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (3)

Input gate:

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (4)

Cell input:

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (5)

Update cell state:

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡 (6)

Output gate:

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (7)

Hidden state:

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) (8)

Output prediction (if needed):

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡) (9)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output 𝑦𝑦𝑡𝑡 and the actual label.

Step 4: Backward pass – Backpropagation
of errors from the last time step to the first
(Backpropagation Through Time), computing the
gradients of the loss with respect to all weights
𝑊𝑊𝑓𝑓,𝑊𝑊𝑖𝑖,𝑊𝑊𝑜𝑜,𝑊𝑊𝑐𝑐, 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐.

Step 5: Update weights - Use an
optimization algorithm to update weights based on
computed gradients, minimizing the loss function.

Step 6: Repeat - Perform forward pass, loss
computation, backward pass, and weight updates
over many epochs until the model converges or
meets early stopping criteria.

Step 7: Prediction - Once trained, the
LSTM can take a new input sequence and compute
hidden states sequentially to predict the
corresponding output sequence.

GRU Algorithm

GRU (Gated Recurrent Unit) is an
improved recurrent neural network architecture,
similar to LSTM but with a simpler structure. It
combines certain gates to reduce the number of
parameters while still maintaining the ability to
remember long-term information. GRU has two
main gates: the update gate and the reset gate,
which control which information should be
retained or discarded in the hidden state.

The GRU training algorithm also uses
Backpropagation Through Time to update weights
based on the gradients of the loss function across
the entire time sequence.

Step 1: Initialize weights and states -
Randomly initialize the weights for the update
gate 𝑊𝑊𝑧𝑧, reset gate 𝑊𝑊𝑟𝑟, candidate state 𝑊𝑊ℎ along
with the biases 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. The initial hidden state
h0 is usually set as a zero vector.

Step 2: Forward pass - Iterate through the
entire time sequence. At each time step 𝑡𝑡:

• Update gate:

𝑧𝑧𝑡𝑡 = σ(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑧𝑧) (10)

• Reset gate:

𝑟𝑟𝑡𝑡 = σ(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑟𝑟) (11)

• Candidate hidden state:

ℎ𝑡̃𝑡 = tanh(𝑊𝑊ℎ ⋅ [𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏ℎ) (12)

• New hidden state:

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ∗ ℎ𝑡̃𝑡 (13)

• Output prediction (if needed):

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡) (14)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output 𝑦𝑦𝑡𝑡 and the actual labels.

Step 4: Backward pass – Backpropagation
of the error from the last time steps to the first,
computing the gradients of the loss function with
respect to all weights 𝑊𝑊𝑧𝑧,𝑊𝑊𝑟𝑟,𝑊𝑊ℎ, 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ.

Step 5: Update weights - Use an
optimization algorithm to update the weights
based on the computed gradients, minimizing the
loss function.

Step 6: Repeat - The process of forward
pass, loss computation, backward pass, and weight
update is repeated for many epochs until the model
converges or meets an early stopping criterion.

Step 7: Prediction - Once trained, the GRU
can take a new input sequence and compute the

7

LSTM training algorithm: LSTM is also
trained using Backpropagation Through Time, an
extension of backpropagation, to update weights
based on the gradient of the loss function over the
entire time series.

Step 1: Initialize weights and states -
Randomly initialize the weights for the forget gate
𝑊𝑊𝑓𝑓, input gate 𝑊𝑊𝑖𝑖, output gate 𝑊𝑊𝑜𝑜, cell input 𝑊𝑊𝑐𝑐
along with the biases 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. The hidden
state ℎ0 and the cell state 𝐶𝐶0 are usually initialized
as zero vectors.

Step 2: Forward pass - Iterate through the
entire time series. At each time step 𝑡𝑡:
Forget gate:

𝑓𝑓𝑡𝑡 = σ(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (3)

Input gate:

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (4)

Cell input:

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (5)

Update cell state:

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡 (6)

Output gate:

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (7)

Hidden state:

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) (8)

Output prediction (if needed):

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡) (9)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output 𝑦𝑦𝑡𝑡 and the actual label.

Step 4: Backward pass – Backpropagation
of errors from the last time step to the first
(Backpropagation Through Time), computing the
gradients of the loss with respect to all weights
𝑊𝑊𝑓𝑓,𝑊𝑊𝑖𝑖,𝑊𝑊𝑜𝑜,𝑊𝑊𝑐𝑐, 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐.

Step 5: Update weights - Use an
optimization algorithm to update weights based on
computed gradients, minimizing the loss function.

Step 6: Repeat - Perform forward pass, loss
computation, backward pass, and weight updates
over many epochs until the model converges or
meets early stopping criteria.

Step 7: Prediction - Once trained, the
LSTM can take a new input sequence and compute
hidden states sequentially to predict the
corresponding output sequence.

GRU Algorithm

GRU (Gated Recurrent Unit) is an
improved recurrent neural network architecture,
similar to LSTM but with a simpler structure. It
combines certain gates to reduce the number of
parameters while still maintaining the ability to
remember long-term information. GRU has two
main gates: the update gate and the reset gate,
which control which information should be
retained or discarded in the hidden state.

The GRU training algorithm also uses
Backpropagation Through Time to update weights
based on the gradients of the loss function across
the entire time sequence.

Step 1: Initialize weights and states -
Randomly initialize the weights for the update
gate 𝑊𝑊𝑧𝑧, reset gate 𝑊𝑊𝑟𝑟, candidate state 𝑊𝑊ℎ along
with the biases 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. The initial hidden state
h0 is usually set as a zero vector.

Step 2: Forward pass - Iterate through the
entire time sequence. At each time step 𝑡𝑡:

• Update gate:

𝑧𝑧𝑡𝑡 = σ(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑧𝑧) (10)

• Reset gate:

𝑟𝑟𝑡𝑡 = σ(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑟𝑟) (11)

• Candidate hidden state:

ℎ𝑡̃𝑡 = tanh(𝑊𝑊ℎ ⋅ [𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏ℎ) (12)

• New hidden state:

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ∗ ℎ𝑡̃𝑡 (13)

• Output prediction (if needed):

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡) (14)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output 𝑦𝑦𝑡𝑡 and the actual labels.

Step 4: Backward pass – Backpropagation
of the error from the last time steps to the first,
computing the gradients of the loss function with
respect to all weights 𝑊𝑊𝑧𝑧,𝑊𝑊𝑟𝑟,𝑊𝑊ℎ, 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ.

Step 5: Update weights - Use an
optimization algorithm to update the weights
based on the computed gradients, minimizing the
loss function.

Step 6: Repeat - The process of forward
pass, loss computation, backward pass, and weight
update is repeated for many epochs until the model
converges or meets an early stopping criterion.

Step 7: Prediction - Once trained, the GRU
can take a new input sequence and compute the

7

LSTM training algorithm: LSTM is also
trained using Backpropagation Through Time, an
extension of backpropagation, to update weights
based on the gradient of the loss function over the
entire time series.

Step 1: Initialize weights and states -
Randomly initialize the weights for the forget gate
𝑊𝑊𝑓𝑓, input gate 𝑊𝑊𝑖𝑖, output gate 𝑊𝑊𝑜𝑜, cell input 𝑊𝑊𝑐𝑐
along with the biases 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. The hidden
state ℎ0 and the cell state 𝐶𝐶0 are usually initialized
as zero vectors.

Step 2: Forward pass - Iterate through the
entire time series. At each time step 𝑡𝑡:
Forget gate:

𝑓𝑓𝑡𝑡 = σ(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (3)

Input gate:

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (4)

Cell input:

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (5)

Update cell state:

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡 (6)

Output gate:

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (7)

Hidden state:

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) (8)

Output prediction (if needed):

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡) (9)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output 𝑦𝑦𝑡𝑡 and the actual label.

Step 4: Backward pass – Backpropagation
of errors from the last time step to the first
(Backpropagation Through Time), computing the
gradients of the loss with respect to all weights
𝑊𝑊𝑓𝑓 ,𝑊𝑊𝑖𝑖,𝑊𝑊𝑜𝑜,𝑊𝑊𝑐𝑐 , 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐.

Step 5: Update weights - Use an
optimization algorithm to update weights based on
computed gradients, minimizing the loss function.

Step 6: Repeat - Perform forward pass, loss
computation, backward pass, and weight updates
over many epochs until the model converges or
meets early stopping criteria.

Step 7: Prediction - Once trained, the
LSTM can take a new input sequence and compute
hidden states sequentially to predict the
corresponding output sequence.

GRU Algorithm

GRU (Gated Recurrent Unit) is an
improved recurrent neural network architecture,
similar to LSTM but with a simpler structure. It
combines certain gates to reduce the number of
parameters while still maintaining the ability to
remember long-term information. GRU has two
main gates: the update gate and the reset gate,
which control which information should be
retained or discarded in the hidden state.

The GRU training algorithm also uses
Backpropagation Through Time to update weights
based on the gradients of the loss function across
the entire time sequence.

Step 1: Initialize weights and states -
Randomly initialize the weights for the update
gate 𝑊𝑊𝑧𝑧, reset gate 𝑊𝑊𝑟𝑟, candidate state 𝑊𝑊ℎ along
with the biases 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. The initial hidden state
h0 is usually set as a zero vector.

Step 2: Forward pass - Iterate through the
entire time sequence. At each time step 𝑡𝑡:

• Update gate:

𝑧𝑧𝑡𝑡 = σ(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑧𝑧) (10)

• Reset gate:

𝑟𝑟𝑡𝑡 = σ(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑟𝑟) (11)

• Candidate hidden state:

ℎ𝑡̃𝑡 = tanh(𝑊𝑊ℎ ⋅ [𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏ℎ) (12)

• New hidden state:

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ∗ ℎ𝑡̃𝑡 (13)

• Output prediction (if needed):

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡) (14)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output 𝑦𝑦𝑡𝑡 and the actual labels.

Step 4: Backward pass – Backpropagation
of the error from the last time steps to the first,
computing the gradients of the loss function with
respect to all weights 𝑊𝑊𝑧𝑧,𝑊𝑊𝑟𝑟 ,𝑊𝑊ℎ ,𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ.

Step 5: Update weights - Use an
optimization algorithm to update the weights
based on the computed gradients, minimizing the
loss function.

Step 6: Repeat - The process of forward
pass, loss computation, backward pass, and weight
update is repeated for many epochs until the model
converges or meets an early stopping criterion.

Step 7: Prediction - Once trained, the GRU
can take a new input sequence and compute the

7

LSTM training algorithm: LSTM is also
trained using Backpropagation Through Time, an
extension of backpropagation, to update weights
based on the gradient of the loss function over the
entire time series.

Step 1: Initialize weights and states -
Randomly initialize the weights for the forget gate
𝑊𝑊𝑓𝑓, input gate 𝑊𝑊𝑖𝑖, output gate 𝑊𝑊𝑜𝑜, cell input 𝑊𝑊𝑐𝑐
along with the biases 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. The hidden
state ℎ0 and the cell state 𝐶𝐶0 are usually initialized
as zero vectors.

Step 2: Forward pass - Iterate through the
entire time series. At each time step 𝑡𝑡:
Forget gate:

𝑓𝑓𝑡𝑡 = σ(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (3)

Input gate:

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (4)

Cell input:

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (5)

Update cell state:

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡 (6)

Output gate:

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (7)

Hidden state:

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) (8)

Output prediction (if needed):

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡) (9)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output 𝑦𝑦𝑡𝑡 and the actual label.

Step 4: Backward pass – Backpropagation
of errors from the last time step to the first
(Backpropagation Through Time), computing the
gradients of the loss with respect to all weights
𝑊𝑊𝑓𝑓 ,𝑊𝑊𝑖𝑖,𝑊𝑊𝑜𝑜,𝑊𝑊𝑐𝑐 , 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐.

Step 5: Update weights - Use an
optimization algorithm to update weights based on
computed gradients, minimizing the loss function.

Step 6: Repeat - Perform forward pass, loss
computation, backward pass, and weight updates
over many epochs until the model converges or
meets early stopping criteria.

Step 7: Prediction - Once trained, the
LSTM can take a new input sequence and compute
hidden states sequentially to predict the
corresponding output sequence.

GRU Algorithm

GRU (Gated Recurrent Unit) is an
improved recurrent neural network architecture,
similar to LSTM but with a simpler structure. It
combines certain gates to reduce the number of
parameters while still maintaining the ability to
remember long-term information. GRU has two
main gates: the update gate and the reset gate,
which control which information should be
retained or discarded in the hidden state.

The GRU training algorithm also uses
Backpropagation Through Time to update weights
based on the gradients of the loss function across
the entire time sequence.

Step 1: Initialize weights and states -
Randomly initialize the weights for the update
gate 𝑊𝑊𝑧𝑧, reset gate 𝑊𝑊𝑟𝑟, candidate state 𝑊𝑊ℎ along
with the biases 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. The initial hidden state
h0 is usually set as a zero vector.

Step 2: Forward pass - Iterate through the
entire time sequence. At each time step 𝑡𝑡:

• Update gate:

𝑧𝑧𝑡𝑡 = σ(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑧𝑧) (10)

• Reset gate:

𝑟𝑟𝑡𝑡 = σ(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑟𝑟) (11)

• Candidate hidden state:

ℎ𝑡̃𝑡 = tanh(𝑊𝑊ℎ ⋅ [𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏ℎ) (12)

• New hidden state:

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ∗ ℎ𝑡̃𝑡 (13)

• Output prediction (if needed):

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡) (14)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output 𝑦𝑦𝑡𝑡 and the actual labels.

Step 4: Backward pass – Backpropagation
of the error from the last time steps to the first,
computing the gradients of the loss function with
respect to all weights 𝑊𝑊𝑧𝑧,𝑊𝑊𝑟𝑟 ,𝑊𝑊ℎ ,𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ.

Step 5: Update weights - Use an
optimization algorithm to update the weights
based on the computed gradients, minimizing the
loss function.

Step 6: Repeat - The process of forward
pass, loss computation, backward pass, and weight
update is repeated for many epochs until the model
converges or meets an early stopping criterion.

Step 7: Prediction - Once trained, the GRU
can take a new input sequence and compute the

7

LSTM training algorithm: LSTM is also
trained using Backpropagation Through Time, an
extension of backpropagation, to update weights
based on the gradient of the loss function over the
entire time series.

Step 1: Initialize weights and states -
Randomly initialize the weights for the forget gate
𝑊𝑊𝑓𝑓, input gate 𝑊𝑊𝑖𝑖, output gate 𝑊𝑊𝑜𝑜, cell input 𝑊𝑊𝑐𝑐
along with the biases 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. The hidden
state ℎ0 and the cell state 𝐶𝐶0 are usually initialized
as zero vectors.

Step 2: Forward pass - Iterate through the
entire time series. At each time step 𝑡𝑡:
Forget gate:

𝑓𝑓𝑡𝑡 = σ(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (3)

Input gate:

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (4)

Cell input:

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (5)

Update cell state:

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡 (6)

Output gate:

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (7)

Hidden state:

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡) (8)

Output prediction (if needed):

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡) (9)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output 𝑦𝑦𝑡𝑡 and the actual label.

Step 4: Backward pass – Backpropagation
of errors from the last time step to the first
(Backpropagation Through Time), computing the
gradients of the loss with respect to all weights
𝑊𝑊𝑓𝑓 ,𝑊𝑊𝑖𝑖,𝑊𝑊𝑜𝑜,𝑊𝑊𝑐𝑐 , 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐.

Step 5: Update weights - Use an
optimization algorithm to update weights based on
computed gradients, minimizing the loss function.

Step 6: Repeat - Perform forward pass, loss
computation, backward pass, and weight updates
over many epochs until the model converges or
meets early stopping criteria.

Step 7: Prediction - Once trained, the
LSTM can take a new input sequence and compute
hidden states sequentially to predict the
corresponding output sequence.

GRU Algorithm

GRU (Gated Recurrent Unit) is an
improved recurrent neural network architecture,
similar to LSTM but with a simpler structure. It
combines certain gates to reduce the number of
parameters while still maintaining the ability to
remember long-term information. GRU has two
main gates: the update gate and the reset gate,
which control which information should be
retained or discarded in the hidden state.

The GRU training algorithm also uses
Backpropagation Through Time to update weights
based on the gradients of the loss function across
the entire time sequence.

Step 1: Initialize weights and states -
Randomly initialize the weights for the update
gate 𝑊𝑊𝑧𝑧, reset gate 𝑊𝑊𝑟𝑟, candidate state 𝑊𝑊ℎ along
with the biases 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. The initial hidden state
h0 is usually set as a zero vector.

Step 2: Forward pass - Iterate through the
entire time sequence. At each time step 𝑡𝑡:

• Update gate:

𝑧𝑧𝑡𝑡 = σ(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑧𝑧) (10)

• Reset gate:

𝑟𝑟𝑡𝑡 = σ(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑟𝑟) (11)

• Candidate hidden state:

ℎ𝑡̃𝑡 = tanh(𝑊𝑊ℎ ⋅ [𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏ℎ) (12)

• New hidden state:

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ∗ ℎ𝑡̃𝑡 (13)

• Output prediction (if needed):

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡) (14)

Step 3: Compute the loss function - Use
an appropriate loss function based on the predicted
output 𝑦𝑦𝑡𝑡 and the actual labels.

Step 4: Backward pass – Backpropagation
of the error from the last time steps to the first,
computing the gradients of the loss function with
respect to all weights 𝑊𝑊𝑧𝑧,𝑊𝑊𝑟𝑟 ,𝑊𝑊ℎ ,𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ.

Step 5: Update weights - Use an
optimization algorithm to update the weights
based on the computed gradients, minimizing the
loss function.

Step 6: Repeat - The process of forward
pass, loss computation, backward pass, and weight
update is repeated for many epochs until the model
converges or meets an early stopping criterion.

Step 7: Prediction - Once trained, the GRU
can take a new input sequence and compute the

Quy Nhon University Journal of Science, 2026, 20(1), 119-133 129
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

and 20% reserved for testing. This partitioning
strategy ensures that the models have sufficient
data for effective learning while maintaining an
independent subset for objective evaluation of
generalization capability on unseen samples.

The input dataset consists of 54
meteorological variables derived from ERA5
reanalysis data including temperature, humidity,
wind, and pressure at various atmospheric levels
combined with surface observational time series
from the Quy Nhon meteorological station. This
integration captures both local-scale conditions
and large-scale atmospheric circulation patterns,
providing a comprehensive representation of
the meteorological environment. The prediction
target is the 24-hour accumulated rainfall,
categorized into discrete rainfall intensity levels.

For efficient model training, rainfall
observations were discretized into five distinct
categories: (0) no rain, (1) rain, (2) moderate
rain, (3) heavy rain, and (4) very heavy rain.
These categorical labels were subsequently
encoded using one-hot encoding to form five-
dimensional binary vectors, each representing a
specific rainfall class.

Following model architecture design,
parameter optimization was conducted through
systematic tuning of the training algorithm, loss
function, and key hyperparameters. Specifically,
all models employed the Adam optimizer with
an initial learning rate of α = 0.001. Adam, which
combines the advantages of Momentum and
RMSProp, dynamically adapts the learning rate
during training, making it particularly effective
for nonlinear and noisy meteorological datasets.8

The Categorical Cross-Entropy loss
function was adopted as it is well-suited for multi-
class classification tasks, enabling the models
to learn class probability distributions rather
than rigid decision boundaries.8 The training
process was executed over 70 epochs with a
batch size of 64, a configuration that balances
learning efficiency and overfitting prevention.
This setup ensures stable gradient updates,

effective utilization of computational resources,
and robust model convergence, ultimately
leading to improved predictive performance on
independent test data.

Table 1. Comparison among the machine learning
model.

Model Accuracy Kappa AUC-ROC

LSTM 0.8211 0.6462 0.9544

RNN 0.7675 0.5254 0.9196

GRU 0.8115 0.6290 0.9514

Table 1 presents the performance
comparison of the three deep learning models—
LSTM, RNN, and GRU—in a multi-class
classification problem. The results show that
LSTM achieved the highest performance across
all three evaluation metrics, with an Accuracy of
0.8211, a Kappa of 0.6462, and an impressive
AUC-ROC of 0.9544. This indicates that LSTM
not only delivers high predictive accuracy but
also effectively distinguishes between classes,
especially in the context of complex data.

GRU also demonstrated competitive
performance, with an Accuracy of 0.8115, a
Kappa of 0.6290, and an AUC-ROC of 0.9514
only slightly lower than LSTM. This suggests
that GRU is an efficient choice when balancing
accuracy and computational complexity is
important.

In contrast, RNN achieved significantly
lower results, with an Accuracy of only 0.7675,
a Kappa of 0.5254, and an AUC-ROC of 0.9196.
This gap is particularly evident in the Kappa
score, indicating that RNN struggles to accurately
classify classes when dealing with imbalanced
data. Notably, while the AUC-ROC scores of
all three models exceed 0.9, the differences in
Accuracy and Kappa indicate that LSTM and
GRU handle the task more effectively than the
traditional RNN.

These results suggest that modern neural
network architectures such as LSTM and GRU
are better suited for multi-class classification

130 Quy Nhon University Journal of Science, 2026, 20(1), 119-133
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

problems than basic RNNs, due to their ability
to capture long-term dependencies in time
series data.

Table 2. Regression error comparison of neural
network models.

Model RMSE MAE

LSTM 0.5024 0.2012

RNN 0.5766 0.2617

GRU 0.5106 0.2096

Table 2 presents the RMSE and MAE for
three neural network models: LSTM, RNN, and
GRU. The LSTM achieved the lowest errors
(RMSE = 0.5024, MAE = 0.2012), followed
by the GRU (RMSE = 0.5106, MAE = 0.2096),

while the RNN exhibited the highest errors
(RMSE = 0.5766, MAE = 0.2617). The average
deviation between predicted and true labels is
approximately 0.2–0.5 units on the 0–4 scale,
indicating that all models reliably forecast
rainfall categories. Overall, models with gating
mechanisms (LSTM and GRU) outperform
the standard RNN in capturing temporal
dependencies and reducing prediction errors.

Confusion Matrix

Analysis of the confusion matrix in
Figure 7 for the three deep learning models
(LSTM, RNN, GRU) in the rainfall classification
task (0: no rain, 1: rain, 2: moderate rain, 3: heavy
rain, 4: very heavy rain) reveals distinct patterns.

Figure 7. Confusion Matrices for LSTM, RNN and GRU Models.

For the LSTM model, classification
performance decreases as rainfall intensity
increases: it achieves the highest accuracy with
16281 correctly classified cases for the no-rain
class (0), drops to 5726 for the light rain class
(1), and only 84 correct predictions for the very
heavy rain class (4). Notably, the model tends
to confuse rainfall classes, as evidenced by 37
very heavy rain cases (4) being misclassified
as light rain (1) and 2 cases as no rain (0). This
outcome reflects a common challenge for models
when dealing with minority classes that occur
infrequently in the dataset, especially extreme
rainfall events. The large disparity in the number
of correct predictions between the majority
class (no rain) and the minority classes (various
rainfall types) highlights the need to apply data
imbalance handling techniques to improve the
model’s overall performance.

The RNN model demonstrates the most
unstable performance among the three, with gaps
in its confusion matrix. Although it achieves
16086 correct predictions for the no-rain
class (0), it misclassifies up to 4900 cases. Its
performance drops sharply for rainfall classes,
with only 4970 correct predictions for light rain
(1) and 102 for very heavy rain (4).

The GRU model shows inconsistent
classification performance across classes. For
the no-rain class (0), it performs well with
16075 correct predictions, but a wide range of
abnormal values (1276–5748) suggests potential
overfitting or issues in the data normalization
process. Performance declines significantly
for rainfall classes: the moderate rain class (2)
achieves only 1216 correct predictions, heavy
rain (3) drops to 398, and the very heavy rain

Quy Nhon University Journal of Science, 2026, 20(1), 119-133 131
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

class (4) is almost entirely unrecognized, with
correct predictions ranging from 0–4. This steep
decline in accuracy with increasing rainfall
intensity, along with extremely low values at
the bottom of the matrix, points to limitations in
input data quality or a suboptimal preprocessing
pipeline, especially for extreme rainfall cases.

Overall, all three models struggled to
accurately classify minority classes, with LSTM
producing the most stable results despite being
imperfect, while RNN and GRU exhibited

several anomalies that require further inspection
of data quality and training processes. The large
disparity in the number of predictions across
classes highlights the issue of data imbalance.

Training progress - Loss log

Analysis of the learning curves (Figure 8)
shows a clear difference in the training processes
of the three models: LSTM, RNN, and GRU. All
three display a general downward trend in loss as
the number of epochs increases, but with distinct
characteristics.

Figure 8. Training progress and loss log for LSTM, RNN, and GRU.

The LSTM model shows the most
stable learning curve, with test loss decreasing
gradually from 0.75 to 0.575 after 70 epochs,
indicating a slow yet steady learning process.
Notably, the gap between train loss and test loss
is relatively small, suggesting that the model
suffers little from overfitting.

RNN improves more quickly in the early
stages, with test loss dropping from 0.65 to 0.45
in the first 30 epochs. However, it later exhibits
strong fluctuations (especially between epochs
40–50), reflecting the inherent instability of the
traditional RNN architecture.

GRU demonstrates a balance between the
two above learning faster than LSTM but with
more stability than RNN. Its test loss decreases
steadily from 0.65 to 0.30. However, the sudden

drop in test loss at epoch 20 (from 0.60 to 0.35)
followed by subsequent oscillations may
point to optimization issues or an unsuitable
learning rate.

In summary, LSTM shows an advantage
in stability, GRU learns faster but is less stable,
and RNN struggles to maintain consistent
performance across epochs. These results align
with theory: LSTM is designed to address the
vanishing gradient problem faced by traditional
RNNs, while GRU is a simplified version of
LSTM with fewer parameters.

Feature Importance

Analysis of Figure 9 shows the contribution
levels of input features for three deep learning
models: LSTM, RNN, and GRU, highlighting

132 Quy Nhon University Journal of Science, 2026, 20(1), 119-133
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

the 15 most important features for each model.
The importance scores were determined using
the permutation importance method, which
measures the decrease in model accuracy when
the values of a particular feature are randomly
shuffled. A greater drop in accuracy indicates
higher importance, reflecting the extent to which
each meteorological variable influences the
model’s predictive performance.

For LSTM, temperature-related factors
at various pressure levels, such as t_750hPa,
t_950hPa, t_300hPa, and the Month variable,
rank at the top, indicating that this model focuses
on temperature variations across both time and
atmospheric height. Additionally, humidity
features like e_700hPa and wind components
such as v_600hPa also play significant roles.

For RNN, features related to surface and
lower-level wind, such as v100 and v10n, along
with mid and low-level temperatures (t_750hPa,
t_900hPa) dominate. Notably, actual rainfall (R)
and 24-hour pressure variation (DELTA_P_24H)
are among the top features, reflecting the RNN’s
ability to strongly leverage local and direct
weather signals.

Meanwhile, GRU prioritizes v100 and
u_600hPa (zonal wind at 600hPa), combined
with temperatures at multiple levels (t_900hPa,
t_750hPa, t_650hPa) and mid-level humidity

Figure 9. Importance of features.

(e_700hPa). The 24-hour pressure variation
(DELTA_P_24H) is also among the important
features, highlighting the role of large-scale
dynamic factors.

Overall, all three models utilize a
combination of temperature, wind, and pressure
information, but LSTM emphasizes multi-level
temperature analysis, RNN is more sensitive to
surface wind and rainfall signals, while GRU
balances wind, temperature, and pressure. These
differences reflect the distinct strategies each
architecture employs in rainfall prediction.

Quy Nhon University Journal of Science, 2026, 20(1), 119-133 133
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

4. CONCLUSION

The study applied three deep neural network
architectures LSTM, RNN, and GRU to classify
rainfall by intensity, using observational data from
the Quy Nhon meteorological station combined
with ERA5 reanalysis data. The results indicate
that all three models achieved good forecasting
performance, with LSTM demonstrating
superior accuracy, class discrimination ability,
and training stability. GRU performed closely
to LSTM, offering a balanced choice between
accuracy and computational cost, while the
traditional RNN was less stable and faced
limitations in classifying minority classes.

Feature importance analysis revealed
that the temporal factor (Month) plays a
prominent role, clearly reflecting the seasonal
nature of rainfall in the study area. In addition,
meteorological features such as wind,
temperature, humidity, and pressure variations
at multiple atmospheric levels also contributed
significantly, with each model tending to exploit
information differently: LSTM focused on multi-
level temperature variations, RNN was more
sensitive to surface wind and rainfall signals,
and GRU maintained a balance between wind,
temperature, and pressure factors.

However, there exist a number of
practical limitations in this study. Although
ERA5 reanalysis data supplement large-scale
information, they exhibit a time lag in updates,
causing the model to rely primarily on surface
observations and limiting its ability to respond
rapidly to short-term atmospheric fluctuations.
Moreover, model performance may decline
over time if not periodically updated, due to
climate change and evolving structures of
meteorological variables. Therefore, regularly
incorporating new data, retraining the model,
and integrating real-time observations with
multi-layer forecasting models and advanced

deep learning techniques will be crucial for
improving accuracy, adaptability, and resilience
to extreme weather event.

Acknowledgment

This research is conducted within the
framework of science and technology projects at
institutional level of Quy Nhon University under
the project code T2025.898.18.

REFERENCES

1.	 M. P. Plummer. Rainfall formation and
precipitation microphysics, Atmospheric
Research, 2017, 183, 12-24.

2.	 J. Smith, A. Brown, T. Nguyen. Artificial
intelligence and numerical weather prediction
models: a technical survey, Science Direct,
2024, 1, 1-3.

3.	 M. Johnson, H. Lee. Quantitative precipitation
forecasting using an improved weighted
moving average probability-matching method,
Atmosphere (MDPI), 2023, 12, 1346.

4.	 Y. LeCun, Y. Bengio, G. Hinton. Deep learning,
Nature, 2015, 521, 436-444.

5.	 S. Hochreiter, J. Schmidhuber. Long short-term
memory, Neural Computation, 1997, 9, 1735-
1780.

6.	 C. M. Bishop. Pattern recognition and machine
learning, Springer, USA, 2006.

7.	 Y. Yu, X. Si, C. Hu, J. Zhang. A review of
recurrent neural networks: LSTM cells and
network architectures, Neural Computation,
2019, 31, 1235-1270.

8.	 I. Goodfellow, Y. Bengio, A. Courville. Deep
learning, MIT Press, Cambridge, USA, 2016.

9.	 O. A. Wani, S. A. Bhat, S. Ahmad, J. A. Sofi, K.
Ahmad, A. Q. Malik, S. A. Romshoo. Predicting
rainfall using machine learning, deep learning,
and time series models across an altitudinal
gradient in the North-Western Himalayas,
Scientific Reports, 2024, 14, 27876.

© 2026 by the authors. This Open Access Article is licensed under the Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC 4.0) license (https://creativecommons.org/licenses/by-nc/4.0/).

