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TÓM TẮT

Nghiên cứu này sử dụng các thuật toán học sâu để xây dựng mô hình dự báo trên các tập dữ liệu thực tế có 
dấu hiệu mưa, nhằm dự đoán có mưa hay không tại một thời điểm cụ thể cũng như phân tích cách mưa xuất hiện 
dựa trên các yếu tố liên quan. Nghiên cứu cũng hướng đến hỗ trợ dự báo chính xác lượng mưa rơi xuống tại một 
địa điểm vào một thời điểm xác định. Trong nghiên cứu, chúng tôi xây dựng mô hình học sâu nhằm hỗ trợ dự báo 
thời tiết, đặc biệt là dự đoán chính xác lượng mưa - một bài toán luôn thách thức không chỉ đối với các cơ quan 
dự báo tại Việt Nam mà còn đối với các hệ thống dự báo tiên tiến trên thế giới. Sử dụng tập dữ liệu thu thập được, 
chúng tôi tiến hành mô tả các thuộc tính của các trường dữ liệu, cũng như phân tích các tham số có tương quan đến 
hiện tượng mưa. Sau đó, chúng tôi áp dụng thuật toán học sâu để xây dựng mô hình dự đoán khả năng có mưa có 
thể xảy ra hay không và xảy ra như thế nào? Các kết quả thu được có thể được ứng dụng trong thực tế để dự đoán 
lượng mưa tại một địa điểm và thời điểm cụ thể từ dữ liệu đầu vào là dữ liệu dấu hiệu mưa được trích xuất từ cơ 
sở dữ liệu dự báo thời tiết. Từ đó, nghiên cứu mở ra tiềm năng ứng dụng trí tuệ nhân tạo trong lĩnh vực dự báo khí 
tượng nhằm nâng cao độ chính xác và giảm thiểu rủi ro do thời tiết cực đoan gây ra.

Từ khóa: Mô hình dự báo mưa, thuật toán LSTM, thuật toán RNN, thuật toán GRU, thuật toán học sâu.
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ABSTRACT

This study aims to employ deep learning algorithms to construct predictive models using real-world 
datasets containing indicators of rainfall. The objective is to determine the occurrence of rainfall at a specific point 
in time and to analyze the underlying factors contributing to its onset. Furthermore, the research is directed toward 
improving the accuracy of quantitative rainfall prediction for a given location and time. This study has developed 
a deep learning-based framework for weather forecasting with a particular focus on accurate rainfall prediction -  
a task that remains highly challenging not only for meteorological agencies in Vietnam but also for state-of-the-
art forecasting systems worldwide. Using the collected dataset, we conducted descriptive statistical analyses to 
characterize its properties and investigated the parameters exhibiting correlations with rainfall events. Based on 
these findings, deep learning algorithms were applied to develop a classification model capable of predicting 
the probability of rainfall occurrence. The experimental results demonstrate that the proposed model can be 
applied to operational scenarios for forecasting rainfall at specific locations and times, utilizing rainfall indicators 
extracted from meteorological forecast databases. The outcomes of this research highlight the potential of artificial 
intelligence techniques in meteorological applications, offering the prospect of enhanced prediction accuracy and 
reduced risks associated with extreme weather phenomena.

Keywords: Rainfall prediction model, LSTM algorithm, RNN algorithm, GRU algorithm, deep learning algorithm.
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1. INTRODUCTION

One of the critical inputs for hydrological 
computation models is rainfall forecasting. 
Rainfall prediction is an inherently complex task, 
especially when forecasting for specific locations 
across different months and seasons. To develop 
a low-cost yet effective method that delivers 
acceptable forecasting accuracy, we employed 
machine learning techniques to build a daily 
rainfall forecasting model. Unlike traditional 
approaches, this study utilized datasets collected 
from monitoring stations, combining observed 

attributes with ERA5 reanalysis data, and applied 
suitable deep learning algorithms to construct 
models for rainfall prediction and related 
influencing factors. In this paper, we present a 
rainfall forecasting model developed using 16 
years of data collected from monitoring stations 
and ERA5 reanalysis datasets. The forecast 
outputs from this model can support decision-
making in operational forecasting and other 
related tasks at monitoring station locations. 

Artificial Intelligence (AI) is playing an 
increasingly important role in meteorology and 
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hydrology due to its capability to process large 
volumes of data from observation stations, 
forecasts, and historical weather records. Deep 
Learning, a subset of AI, employs multi-layer 
neural networks to learn complex patterns from 
data and construct predictive models. 

In this study, we developed deep learning 
models based on the Long Short-Term Memory 
(LSTM) architecture to predict the occurrence 
and probability of rainfall. Model optimization 
was performed through the analysis of evaluation 
metrics such as the confusion matrix, ROC-AUC 
curve, and Precision–Recall curve, alongside 
the identification of key variables influencing 
predictive performance.

We also integrated meteorological data 
from observation stations with deep learning 
algorithms to construct a rainfall forecasting model 
that can assist meteorologists in their forecasting 
tasks and be transferable to other stations 
when necessary. By combining meteorological 
expertise with observational datasets, the model 
can analyze factors influencing rainfall based on 
meteorological parameters, thereby providing 
predictions on rainfall occurrence and the 
expected rainfall intensity.

2. RAIN FORECASTING PROBLEMS

2.1. Rain forecasting problem 

Currently, accurately predicting rainfall at a 
specific location and time remains a significant 
challenge for meteorological agencies worldwide.

Rainfall is essentially the result of 
atmospheric processes in which water vapor 
in the atmosphere undergoes a phase change 
(condensation) into solid or liquid forms such as 
water, ice, or snow and falls to the ground under 
the influence of gravity. During the process 
of condensation and descent to the ground, 
raindrops are affected by horizontal air currents. 
Due to differences in environmental conditions, 
the raindrops themselves may partially evaporate 
during their fall.1

In recent years, meteorology and 
hydrology have made significant progress in 
forecasting large-scale heavy rainfall events. 

Such phenomena can be predicted 2–3 days in 
advance with an accuracy of about 70%, and 
in some cases, early warnings can be issued 
5-7 days ahead. Forecast information for large-
scale heavy rainfall events is generally reliable 
regarding the timing of rainfall onset, the 
affected areas, and the ending time of the event.

Early forecasting of large-scale heavy 
rainfall plays a crucial role in supporting flood, 
flash flood, landslide, and inundation warnings. 
These alerts are communicated to authorities and 
the public to enable proactive response planning 
and minimize damage.

However, when it comes to quantitative 
rainfall forecasts (for specific locations and 
times), current numerical weather prediction 
technology still faces many limitations. Notably, 
there are constraints in spatial resolution due 
to the use of numerous empirical parameters 
in physical models, as well as a shortage of 
observational input data particularly over oceans 
and at higher atmospheric layers.

Estimates indicate that the reliability of 
point-based quantitative forecasts within a 1–3 
day range is only about 40–60% for light and 
moderate rainfall events (less than 16 mm/day).

In addition to improving the physical 
modeling capabilities of forecasting systems, the 
meteorological sector also focuses on enhancing 
the training and expertise of forecasters especially 
in utilizing intelligent decision-support systems. 
This allows for the integration of various 
types of observations and forecast products, 
enabling fine-tuning of rainfall and temperature 
predictions, as well as leveraging ensemble 
forecasting and other decision-support tools.2,3

2.2. Rainfall database 

In this study, we use data from the Quy Nhon 
Meteorological Station a Class I meteorological 
station with the international code “48870”. This 
station is internationally recognized as a high-
accuracy data source and is frequently used in 
weather forecasting models.

The dataset spans from 2009 to 2024 and 
includes hourly observational variables such 
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as temperature, humidity, station pressure, and 
total rainfall. In addition, reanalysis data from 
ERA5 is incorporated, comprising 54 variables, 
primarily related to temperature, humidity, 
and wind vectors in the u and v directions at 
atmospheric pressure levels ranging from 950 hPa 
to 300 hPa. All data are organized as time series 
by hour, day, and month.

The objective of using these datasets is 
to explore and analyze the relationship between 
rainfall and other meteorological factors in the 
Quy Nhon area. Rainfall classification in the 
dataset follows the standards of the Vietnam 
Meteorology and Hydrology sector as follows:

•	No rain = 0mm/day
•	Rain < 16mm/day
•	16mm/day ≤ Moderate rain < 50mm/day
•	50mm/day ≤ Heavy rain < 100mm/day
•	Very heavy rain ≥ 100mm/day

Statistics show that “No rain” has 
the highest occurrence with 86601 cases, 
followed by “Rain” with 40752 cases, and then 
“Moderate rain” with 9157 cases. “Heavy rain” 
is significantly less frequent with 2476 cases, 
and finally, “Very heavy rain” has the fewest 
occurrences with 1192 cases.

Figure 1. The distribution of rainfall categories in the 
dataset.

From Figure 1, it is evident that among 
100 sampled values, there are 62 “No rain” 
cases, 29 “Rain” cases, 6 “Moderate rain” cases, 
2 “Heavy rain” cases, and only 1 “Very heavy 
rain” case. This indicates an uneven distribution 
of data among rainfall categories, with heavier 
rainfall events occurring less frequently. 

Figure 2. The distribution of rainfall categories by month.
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Based on Figure 2, heavy and very heavy 
rainfall events are primarily concentrated between 
September and December, with a pronounced 
increase in their occurrence during September, 
October, and November. This period corresponds 
to the region’s main rainy season, when active 
weather systems deliver abundant precipitation. 
In these months, not only does the number of 
rainfall events rise significantly, but rainfall 
intensity also increases, contributing substantially 
to the region’s annual total precipitation.

Specifically, the number of moderate, 
heavy, and very heavy rainfall events increases 
sharply from September to December, whereas 
the rest of the year is dominated by no rain or rain 
events. This highlights a clear seasonal pattern in 
rainfall distribution within the study area.

As shown in Figure 3, rainfall events 
occur most frequently in the temperature 

range of 24°C to 30°C, with particularly high 
concentrations in the 24–26°C and 26–28°C 
intervals. In these temperature ranges, the total 
number of rainfall samples (from light to very 
heavy) accounts for the majority compared to 
other temperature groups. Notably, very heavy 
rainfall events almost exclusively occur within 
the 24-26°C and 26-28°C intervals, indicating 
that this temperature range is the most favorable 
for extreme rainfall. Conversely, at lower 
temperatures (< 22°C) or higher temperatures  
(> 30°C), the frequency of rainfall events 
especially heavy and very heavy declines 
sharply, with almost no extreme rainfall observed 
above 30°C. This suggests that samples with 
excessively low or high temperatures are less 
likely to be associated with rainfall, particularly 
intense rainfall events. 

Figure 3. The distribution of rainfall types across temperature groups.
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Figure 4 shows that the frequency of 
rainfall events (from light rain to very heavy 
rain) increases with higher humidity levels. In 
the 80-90% humidity range, the total number of 
rainy samples is the highest, with light rain and 
moderate rain dominating. This indicates that 
this humidity band is ideal for rain formation. 
The 70-80% range comes next, also showing 
a relatively large number of rainy samples, 
reflecting the clear trend that higher humidity is 
associated with a higher likelihood of rain.

Notably, heavy and very heavy rainfall 
events occur mainly in the two highest humidity 
groups 80–90% and >90% and are almost absent 

Figure 4. Distribution of rainfall types by humidity group.

in lower humidity groups. This suggests that 
extreme rainfall events often happen when the 
air holds a very high moisture content, providing 
favorable conditions for intense atmospheric 
condensation. In contrast, humidity groups 
below 60% and 60-70% record relatively few 
rainy samples, with heavy and very heavy 
rain almost non-existent, indicating that drier 
environments have little potential to produce 
rainfall, especially extreme events. Moreover, 
the >90% humidity group is the only one with 
the highest number of very heavy rain samples 
in the entire chart, emphasizing the role of 
extreme humidity in triggering severe weather 
phenomena. 



Quy Nhon University Journal of Science, 2026, 20(1), 119-133 125
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

number of rainy samples is very low, and heavy 
rainfall events are almost absent, indicating that 
both very low and very high pressure are not 
ideal environments for rain. The 1015-1020 mb 
group still maintains a considerable number 
of rainy samples but shows a slight decrease 
compared to the preceding range, suggesting that 
when pressure exceeds 1015 mb, the likelihood 
of rain begins to decline. Similarly, the 1020-
1025 mb and >1025 mb groups are dominated 
by non-rain samples, reflecting a more stable 
atmosphere with fewer conditions supporting 
rainfall development.

In Figure 5, rainfall samples are 
concentrated mainly in the pressure range of 
1005-1015 mb, with the 1005-1010 mb and 1010-
1015 mb groups clearly dominating. This range 
not only shows a high number of rainy samples 
but also a noticeable increase in strong rainfall 
events, reflected in the frequent appearance of 
orange and red bars representing heavy and very 
heavy rain. This suggests that this pressure range 
is favorable for atmospheric conditions that lead 
to the formation and growth of convective rain 
clouds.

On the other hand, at the extremes of 
pressure specifically <1000 mb and >1025 mb the 

Figure 5. Distribution of rainfall types by pressure group.



126 Quy Nhon University Journal of Science, 2026, 20(1), 119-133
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

Because the features in the dataset are 
independent, analyzing their correlations is 
essential to assess both their interrelationships 
and their relationship with the target variable 
in this case, the likelihood of rain the next day 
(rain_tomorrow).

Figure 6. Correlation matrix between factors.

From Figure 6, we observe that humidity, 
month, and rainfall all show positive correlations 
with the probability of rain on the following 
day, with previous-day rainfall exhibiting the 
strongest positive correlation with next-day 
rain. In contrast, factors such as temperature 
have a negative correlation with the likelihood 
of rain. Notably, atmospheric pressure shows a 
very weak correlation with next-day rain, with a 
coefficient of only 0.09.

3. ALGORITHMS AND PREDICTION 
MODELS

3.1. Deep learning algorithms 

Deep learning is an important branch of artificial 
intelligence that focuses on building and training 
multi-layer neural networks to automatically 
learn complex features from data.

Unlike traditional machine learning 
methods, deep learning can extract features 
directly from raw data, reducing dependence on 
manual preprocessing steps while effectively 
capturing complex nonlinear relationships 
between input variables.

Thanks to these capabilities, deep learning 
has become a powerful tool in fields that require 
processing large and complex datasets, such as 
computer vision, natural language processing, 
and especially time series forecasting in 
meteorology and hydrology.5

In the context of weather forecasting and 
hydrometeorological phenomena, deep learning 
algorithms are widely applied to predict variables 
related to rainfall, temperature, humidity, 
pressure, and other meteorological parameters.

Sequential neural networks such as RNNs 
(Recurrent Neural Networks) allow the model 
to retain information from previous time steps, 
while more advanced variants such as LSTM 
(Long Short-Term Memory) and GRU (Gated 
Recurrent Unit) are specifically designed to 
address the vanishing gradient problem, enabling 
the learning of long-term dependencies in time 
series data.6

The choice of an appropriate deep learning 
algorithm depends on the specific characteristics 
of the problem and the data.

For example, with datasets containing 
long time series and requiring the capture of 
complex relationships among meteorological 
variables, LSTM is often preferred for its long-
term memory capabilities, while GRU can be 
used when reducing the number of parameters 
and speeding up training is a priority. Thus, deep 
learning not only offers more accurate forecasting 
but also provides flexibility in uncovering hidden 
features in hydrometeorological data.

RNN Algorithm

RNN (Recurrent Neural Network) is a 
neural network architecture specifically designed 
to process time series data, where the current 
value depends on previous values. Unlike 
traditional neural networks, RNNs have the 
ability to retain information from previous time 
steps through a hidden state, enabling the model 
to predict future values based on historical data.5



Quy Nhon University Journal of Science, 2026, 20(1), 119-133 127
https://doi.org/10.52111/qnjs.2026.20111

QUY NHON UNIVERSITY
ScienceJournal of

RNN Training Algorithm: RNNs are 
trained using Backpropagation Through Time 
(BPTT), an extension of backpropagation, to 
update weights based on the gradient of the 
loss function with respect to the entire time 
sequence:4

Step 1: Weight Initialization - Randomly 
initialize the weights Wh (hidden state weights), 
Wx (input weights), Wy (output weights) 
along with biases b (hidden state bias) and c  
(output bias). 

Step 2: Forward pass - Iterate through 
the entire time sequence. At each time step t,  
compute the hidden state ht based on the current 
input xt and the previous hidden state ht-1 
according to the formula:

Then, compute the predicted output yt  
from the hidden state ht:

Step 3: Compute the loss function - 
Use an appropriate loss function based on the 
predicted output yt  and the actual label yt  

Step 4: Backward pass – Backpropagation 
of the error from the final time steps to the initial 
ones, computing the gradient of the loss function 
with respect to the weights Wx, Wh, Wy, b, c.

Step 5: Update weights - Use an 
optimization algorithm to update the weights 
based on the computed gradients, minimizing 
the loss function.

Step 6: Repeat - The process of forward 
pass, loss calculation, backward pass, and weight 
updates is repeated over many epochs until the 
model converges or meets the early stopping 
criterion.

Step 7: Prediction - Once the model is 
trained, the RNN can take a new input sequence 
and continuously compute the hidden states to 
predict the corresponding output sequence.

LSTM Algorithm

LSTM (Long Short-Term Memory) is 
an improved recurrent neural network (RNN) 
architecture designed to handle long time-
series data and overcome the vanishing gradient 
problem often found in traditional RNNs. 
LSTM can retain long-term information thanks 
to its gating mechanism, which controls which 
information is kept, updated, or discarded in the 
cell state.5,7

LSTM training algorithm: LSTM is also 
trained using Backpropagation Through Time, an 
extension of backpropagation, to update weights 
based on the gradient of the loss function over 
the entire time series.

Step 1: Initialize weights and states - 
Randomly initialize the weights for the forget 
gate Wf , input gate Wi, output gate Wo​, cell 
input Wc  along with the biases bf, bi, bo, bc​. The 
hidden state h0 and the cell state C0 ​​are usually 
initialized as zero vectors.

Step 2: Forward pass - Iterate through 
the entire time series. At each time step t:
Forget gate:

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Step 3: Compute the loss function - 
Use an appropriate loss function based on the 
predicted output  yt and the actual label.

 

7 
 

LSTM training algorithm: LSTM is also 
trained using Backpropagation Through Time, an 
extension of backpropagation, to update weights 
based on the gradient of the loss function over the 
entire time series. 

Step 1: Initialize weights and states - 
Randomly initialize the weights for the forget gate 
𝑊𝑊𝑓𝑓, input gate 𝑊𝑊𝑖𝑖, output gate 𝑊𝑊𝑜𝑜, cell input 𝑊𝑊𝑐𝑐 
along with the biases 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. The hidden 
state ℎ0 and the cell state 𝐶𝐶0 are usually initialized 
as zero vectors. 

Step 2: Forward pass - Iterate through the 
entire time series. At each time step 𝑡𝑡: 
Forget gate: 

𝑓𝑓𝑡𝑡 = σ(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)           (3) 

Input gate: 

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)            (4) 

Cell input: 

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)            (5) 

Update cell state: 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡                (6) 

Output gate: 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)           (7) 

Hidden state: 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡)                    (8) 

Output prediction (if needed): 

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡)                 (9) 

Step 3: Compute the loss function - Use 
an appropriate loss function based on the predicted 
output 𝑦𝑦𝑡𝑡 and the actual label. 

Step 4: Backward pass – Backpropagation 
of errors from the last time step to the first 
(Backpropagation Through Time), computing the 
gradients of the loss with respect to all weights 
𝑊𝑊𝑓𝑓 ,𝑊𝑊𝑖𝑖,𝑊𝑊𝑜𝑜,𝑊𝑊𝑐𝑐 , 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. 

Step 5: Update weights - Use an 
optimization algorithm to update weights based on 
computed gradients, minimizing the loss function. 

Step 6: Repeat - Perform forward pass, loss 
computation, backward pass, and weight updates 
over many epochs until the model converges or 
meets early stopping criteria. 

Step 7: Prediction - Once trained, the 
LSTM can take a new input sequence and compute 
hidden states sequentially to predict the 
corresponding output sequence. 

GRU Algorithm 

GRU (Gated Recurrent Unit) is an 
improved recurrent neural network architecture, 
similar to LSTM but with a simpler structure. It 
combines certain gates to reduce the number of 
parameters while still maintaining the ability to 
remember long-term information. GRU has two 
main gates: the update gate and the reset gate, 
which control which information should be 
retained or discarded in the hidden state. 

The GRU training algorithm also uses 
Backpropagation Through Time to update weights 
based on the gradients of the loss function across 
the entire time sequence. 

Step 1: Initialize weights and states - 
Randomly initialize the weights for the update 
gate 𝑊𝑊𝑧𝑧, reset gate 𝑊𝑊𝑟𝑟, candidate state 𝑊𝑊ℎ along 
with the biases 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. The initial hidden state 
h0  is usually set as a zero vector. 

Step 2: Forward pass - Iterate through the 
entire time sequence. At each time step 𝑡𝑡: 

• Update gate: 

𝑧𝑧𝑡𝑡 = σ(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑧𝑧)           (10) 

• Reset gate: 

𝑟𝑟𝑡𝑡 = σ(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑟𝑟)           (11) 

• Candidate hidden state: 

ℎ𝑡̃𝑡 = tanh(𝑊𝑊ℎ ⋅ [𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏ℎ)    (12) 

• New hidden state: 

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ∗ ℎ𝑡̃𝑡         (13) 

• Output prediction (if needed): 

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡)                (14) 

Step 3: Compute the loss function - Use 
an appropriate loss function based on the predicted 
output 𝑦𝑦𝑡𝑡 and the actual labels. 

Step 4: Backward pass – Backpropagation 
of the error from the last time steps to the first, 
computing the gradients of the loss function with 
respect to all weights 𝑊𝑊𝑧𝑧,𝑊𝑊𝑟𝑟 ,𝑊𝑊ℎ ,𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. 

Step 5: Update weights - Use an 
optimization algorithm to update the weights 
based on the computed gradients, minimizing the 
loss function. 

Step 6: Repeat - The process of forward 
pass, loss computation, backward pass, and weight 
update is repeated for many epochs until the model 
converges or meets an early stopping criterion. 

Step 7: Prediction - Once trained, the GRU 
can take a new input sequence and compute the 
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3. ALGORITHMS AND PREDICTION 
MODELS 

3.1. Deep learning algorithms  

Deep learning is an important branch of artificial 
intelligence that focuses on building and training 
multi-layer neural networks to automatically learn 
complex features from data. 

Unlike traditional machine learning 
methods, deep learning can extract features 
directly from raw data, reducing dependence on 
manual preprocessing steps while effectively 
capturing complex nonlinear relationships 
between input variables. 

Thanks to these capabilities, deep learning 
has become a powerful tool in fields that require 
processing large and complex datasets, such as 
computer vision, natural language processing, and 
especially time series forecasting in meteorology 
and hydrology.5 

In the context of weather forecasting and 
hydrometeorological phenomena, deep learning 
algorithms are widely applied to predict variables 
related to rainfall, temperature, humidity, 
pressure, and other meteorological parameters. 

Sequential neural networks such as RNNs 
(Recurrent Neural Networks) allow the model to 
retain information from previous time steps, while 
more advanced variants such as LSTM (Long 
Short-Term Memory) and GRU (Gated Recurrent 
Unit) are specifically designed to address the 
vanishing gradient problem, enabling the learning 
of long-term dependencies in time series data.6 

The choice of an appropriate deep learning 
algorithm depends on the specific characteristics 
of the problem and the data. 

For example, with datasets containing long 
time series and requiring the capture of complex 
relationships among meteorological variables, 
LSTM is often preferred for its long-term memory 
capabilities, while GRU can be used when 
reducing the number of parameters and speeding 
up training is a priority. Thus, deep learning not 
only offers more accurate forecasting but also 
provides flexibility in uncovering hidden features 
in hydrometeorological data. 

RNN Algorithm 

RNN (Recurrent Neural Network) is a 
neural network architecture specifically designed 
to process time series data, where the current value 
depends on previous values. Unlike traditional 
neural networks, RNNs have the ability to retain 
information from previous time steps through a 

hidden state, enabling the model to predict future 
values based on historical data.5 

RNN Training Algorithm: RNNs are 
trained using Backpropagation Through Time 
(BPTT), an extension of backpropagation, to 
update weights based on the gradient of the loss 
function with respect to the entire time sequence:4 

Step 1: Weight Initialization - Randomly 
initialize the weights 𝑊𝑊ℎ (hidden state weights), 
𝑊𝑊𝑥𝑥 (input weights), 𝑊𝑊𝑦𝑦 (output weights) along 
with biases 𝑏𝑏 (hidden state bias) and 𝑐𝑐 (output 
bias).  

Step 2: Forward pass - Iterate through the 
entire time sequence. At each time step 𝑡𝑡, compute 
the hidden state ℎ𝑡𝑡 based on the current input 𝑥𝑥𝑡𝑡 
and the previous hidden state ℎ𝑡𝑡−1 according to 
the formula: 

ℎ𝑡𝑡 = tanh(𝑊𝑊𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑏𝑏)      (1) 

Then, compute the predicted output 𝑦𝑦𝑡𝑡  from the 
hidden state ℎ𝑡𝑡: 

𝑦𝑦𝑡𝑡 = softmax(𝑊𝑊𝑦𝑦ℎ𝑡𝑡 + 𝑐𝑐)             (2) 

Step 3: Compute the loss function - Use 
an appropriate loss function based on the predicted 
output 𝑦𝑦𝑡𝑡 and the actual label 𝑦𝑦𝑡𝑡 

Step 4: Backward pass – Backpropagation 
of the error from the final time steps to the initial 
ones, computing the gradient of the loss function 
with respect to the weights 𝑊𝑊𝑥𝑥 ,𝑊𝑊ℎ ,𝑊𝑊𝑦𝑦, 𝑏𝑏, 𝑐𝑐. 

Step 5: Update weights - Use an 
optimization algorithm to update the weights 
based on the computed gradients, minimizing the 
loss function. 

Step 6: Repeat - The process of forward 
pass, loss calculation, backward pass, and weight 
updates is repeated over many epochs until the 
model converges or meets the early stopping 
criterion. 

Step 7: Prediction - Once the model is 
trained, the RNN can take a new input sequence 
and continuously compute the hidden states to 
predict the corresponding output sequence. 

LSTM Algorithm 

LSTM (Long Short-Term Memory) is an 
improved recurrent neural network (RNN) 
architecture designed to handle long time-series 
data and overcome the vanishing gradient problem 
often found in traditional RNNs. LSTM can retain 
long-term information thanks to its gating 
mechanism, which controls which information is 
kept, updated, or discarded in the cell state.5,7 
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3.1. Deep learning algorithms  
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Unlike traditional machine learning 
methods, deep learning can extract features 
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of long-term dependencies in time series data.6 
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to process time series data, where the current value 
depends on previous values. Unlike traditional 
neural networks, RNNs have the ability to retain 
information from previous time steps through a 

hidden state, enabling the model to predict future 
values based on historical data.5 

RNN Training Algorithm: RNNs are 
trained using Backpropagation Through Time 
(BPTT), an extension of backpropagation, to 
update weights based on the gradient of the loss 
function with respect to the entire time sequence:4 

Step 1: Weight Initialization - Randomly 
initialize the weights 𝑊𝑊ℎ (hidden state weights), 
𝑊𝑊𝑥𝑥 (input weights), 𝑊𝑊𝑦𝑦 (output weights) along 
with biases 𝑏𝑏 (hidden state bias) and 𝑐𝑐 (output 
bias).  

Step 2: Forward pass - Iterate through the 
entire time sequence. At each time step 𝑡𝑡, compute 
the hidden state ℎ𝑡𝑡 based on the current input 𝑥𝑥𝑡𝑡 
and the previous hidden state ℎ𝑡𝑡−1 according to 
the formula: 

ℎ𝑡𝑡 = tanh(𝑊𝑊𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎℎ𝑡𝑡−1 + 𝑏𝑏)      (1) 

Then, compute the predicted output 𝑦𝑦𝑡𝑡 from the 
hidden state ℎ𝑡𝑡: 
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Step 3: Compute the loss function - Use 
an appropriate loss function based on the predicted 
output 𝑦𝑦𝑡𝑡 and the actual label 𝑦𝑦𝑡𝑡 

Step 4: Backward pass – Backpropagation 
of the error from the final time steps to the initial 
ones, computing the gradient of the loss function 
with respect to the weights 𝑊𝑊𝑥𝑥,𝑊𝑊ℎ,𝑊𝑊𝑦𝑦, 𝑏𝑏, 𝑐𝑐. 

Step 5: Update weights - Use an 
optimization algorithm to update the weights 
based on the computed gradients, minimizing the 
loss function. 

Step 6: Repeat - The process of forward 
pass, loss calculation, backward pass, and weight 
updates is repeated over many epochs until the 
model converges or meets the early stopping 
criterion. 

Step 7: Prediction - Once the model is 
trained, the RNN can take a new input sequence 
and continuously compute the hidden states to 
predict the corresponding output sequence. 

LSTM Algorithm 

LSTM (Long Short-Term Memory) is an 
improved recurrent neural network (RNN) 
architecture designed to handle long time-series 
data and overcome the vanishing gradient problem 
often found in traditional RNNs. LSTM can retain 
long-term information thanks to its gating 
mechanism, which controls which information is 
kept, updated, or discarded in the cell state.5,7 
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Step 4: Backward pass – Backpropagation 
of errors from the last time step to the first 
(Backpropagation Through Time), computing 
the gradients of the loss with respect to all 
weights Wf , Wi, Wo, Wc , bf, bi, bo, bc.

Step 5: Update weights - Use an 
optimization algorithm to update weights based 
on computed gradients, minimizing the loss 
function.

Step 6: Repeat - Perform forward pass, 
loss computation, backward pass, and weight 
updates over many epochs until the model 
converges or meets early stopping criteria.

Step 7: Prediction - Once trained, the 
LSTM can take a new input sequence and 
compute hidden states sequentially to predict the 
corresponding output sequence.

GRU Algorithm

GRU (Gated Recurrent Unit) is an 
improved recurrent neural network architecture, 
similar to LSTM but with a simpler structure. It 
combines certain gates to reduce the number of 
parameters while still maintaining the ability to 
remember long-term information. GRU has two 
main gates: the update gate and the reset gate, 
which control which information should be 
retained or discarded in the hidden state.

The GRU training algorithm also uses 
Backpropagation Through Time to update 
weights based on the gradients of the loss 
function across the entire time sequence.

Step 1: Initialize weights and states - 
Randomly initialize the weights for the update 
gate Wz​, reset gate Wr, candidate state Wh along 
with the biases bz, br, bh. The initial hidden state 
h0 ​ is usually set as a zero vector.

Step 2: Forward pass - Iterate through 
the entire time sequence. At each time step t:

•	 Update gate:

        

•	 Reset gate:

        

•	 Candidate hidden state:

   

•	 New hidden state:
     

•	 Output prediction (if needed):

            

Step 3: Compute the loss function - 
Use an appropriate loss function based on the 
predicted output yt ​and the actual labels.

Step 4: Backward pass – Backpropagation 
of the error from the last time steps to the first, 
computing the gradients of the loss function with 
respect to all weights Wz, Wr, Wh, bz , br, bh.

Step 5: Update weights - Use an 
optimization algorithm to update the weights 
based on the computed gradients, minimizing 
the loss function.

Step 6: Repeat - The process of forward 
pass, loss computation, backward pass, and 
weight update is repeated for many epochs until 
the model converges or meets an early stopping 
criterion.

Step 7: Prediction - Once trained, the 
GRU can take a new input sequence and 
compute the hidden state continuously to predict 
the corresponding output sequence.

3.2. Prediction models using deep learning

The dataset from the Quy Nhon Meteorological 
Station, after being cleaned and encoded to 
convert categorical features into numerical 
values, can be used as input for deep learning 
models.The objective is to train and compare the 
performance of three deep learning algorithms: 
LSTM, RNN, and GRU. These models are highly 
suitable for time series data and have proven 
effective in weather forecasting tasks thanks to 
their ability to capture temporal dependencies, 
automatically extract features from raw data, and 
model complex nonlinear relationships between 
variables.4,9

The processed dataset was divided into 
two subsets, with 80% allocated for training 
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LSTM training algorithm: LSTM is also 
trained using Backpropagation Through Time, an 
extension of backpropagation, to update weights 
based on the gradient of the loss function over the 
entire time series. 

Step 1: Initialize weights and states - 
Randomly initialize the weights for the forget gate 
𝑊𝑊𝑓𝑓, input gate 𝑊𝑊𝑖𝑖, output gate 𝑊𝑊𝑜𝑜, cell input 𝑊𝑊𝑐𝑐 
along with the biases 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. The hidden 
state ℎ0 and the cell state 𝐶𝐶0 are usually initialized 
as zero vectors. 

Step 2: Forward pass - Iterate through the 
entire time series. At each time step 𝑡𝑡: 
Forget gate: 

𝑓𝑓𝑡𝑡 = σ(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)           (3) 

Input gate: 

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)            (4) 

Cell input: 

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)            (5) 

Update cell state: 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡                (6) 

Output gate: 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)           (7) 

Hidden state: 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡)                    (8) 

Output prediction (if needed): 

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡)                 (9) 

Step 3: Compute the loss function - Use 
an appropriate loss function based on the predicted 
output 𝑦𝑦𝑡𝑡 and the actual label. 

Step 4: Backward pass – Backpropagation 
of errors from the last time step to the first 
(Backpropagation Through Time), computing the 
gradients of the loss with respect to all weights 
𝑊𝑊𝑓𝑓,𝑊𝑊𝑖𝑖,𝑊𝑊𝑜𝑜,𝑊𝑊𝑐𝑐, 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. 

Step 5: Update weights - Use an 
optimization algorithm to update weights based on 
computed gradients, minimizing the loss function. 

Step 6: Repeat - Perform forward pass, loss 
computation, backward pass, and weight updates 
over many epochs until the model converges or 
meets early stopping criteria. 

Step 7: Prediction - Once trained, the 
LSTM can take a new input sequence and compute 
hidden states sequentially to predict the 
corresponding output sequence. 

GRU Algorithm 

GRU (Gated Recurrent Unit) is an 
improved recurrent neural network architecture, 
similar to LSTM but with a simpler structure. It 
combines certain gates to reduce the number of 
parameters while still maintaining the ability to 
remember long-term information. GRU has two 
main gates: the update gate and the reset gate, 
which control which information should be 
retained or discarded in the hidden state. 

The GRU training algorithm also uses 
Backpropagation Through Time to update weights 
based on the gradients of the loss function across 
the entire time sequence. 

Step 1: Initialize weights and states - 
Randomly initialize the weights for the update 
gate 𝑊𝑊𝑧𝑧, reset gate 𝑊𝑊𝑟𝑟, candidate state 𝑊𝑊ℎ along 
with the biases 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. The initial hidden state 
h0  is usually set as a zero vector. 

Step 2: Forward pass - Iterate through the 
entire time sequence. At each time step 𝑡𝑡: 

• Update gate: 

𝑧𝑧𝑡𝑡 = σ(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑧𝑧)           (10) 

• Reset gate: 

𝑟𝑟𝑡𝑡 = σ(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑟𝑟)           (11) 

• Candidate hidden state: 

ℎ𝑡̃𝑡 = tanh(𝑊𝑊ℎ ⋅ [𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏ℎ)    (12) 

• New hidden state: 

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ∗ ℎ𝑡̃𝑡         (13) 

• Output prediction (if needed): 

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡)                (14) 

Step 3: Compute the loss function - Use 
an appropriate loss function based on the predicted 
output 𝑦𝑦𝑡𝑡 and the actual labels. 

Step 4: Backward pass – Backpropagation 
of the error from the last time steps to the first, 
computing the gradients of the loss function with 
respect to all weights 𝑊𝑊𝑧𝑧,𝑊𝑊𝑟𝑟,𝑊𝑊ℎ, 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. 

Step 5: Update weights - Use an 
optimization algorithm to update the weights 
based on the computed gradients, minimizing the 
loss function. 

Step 6: Repeat - The process of forward 
pass, loss computation, backward pass, and weight 
update is repeated for many epochs until the model 
converges or meets an early stopping criterion. 

Step 7: Prediction - Once trained, the GRU 
can take a new input sequence and compute the 
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LSTM training algorithm: LSTM is also 
trained using Backpropagation Through Time, an 
extension of backpropagation, to update weights 
based on the gradient of the loss function over the 
entire time series. 

Step 1: Initialize weights and states - 
Randomly initialize the weights for the forget gate 
𝑊𝑊𝑓𝑓, input gate 𝑊𝑊𝑖𝑖, output gate 𝑊𝑊𝑜𝑜, cell input 𝑊𝑊𝑐𝑐 
along with the biases 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. The hidden 
state ℎ0 and the cell state 𝐶𝐶0 are usually initialized 
as zero vectors. 
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Forget gate: 
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Update cell state: 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡                (6) 

Output gate: 
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Hidden state: 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡)                    (8) 

Output prediction (if needed): 

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡)                 (9) 

Step 3: Compute the loss function - Use 
an appropriate loss function based on the predicted 
output 𝑦𝑦𝑡𝑡 and the actual label. 

Step 4: Backward pass – Backpropagation 
of errors from the last time step to the first 
(Backpropagation Through Time), computing the 
gradients of the loss with respect to all weights 
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Step 5: Update weights - Use an 
optimization algorithm to update weights based on 
computed gradients, minimizing the loss function. 

Step 6: Repeat - Perform forward pass, loss 
computation, backward pass, and weight updates 
over many epochs until the model converges or 
meets early stopping criteria. 

Step 7: Prediction - Once trained, the 
LSTM can take a new input sequence and compute 
hidden states sequentially to predict the 
corresponding output sequence. 

GRU Algorithm 

GRU (Gated Recurrent Unit) is an 
improved recurrent neural network architecture, 
similar to LSTM but with a simpler structure. It 
combines certain gates to reduce the number of 
parameters while still maintaining the ability to 
remember long-term information. GRU has two 
main gates: the update gate and the reset gate, 
which control which information should be 
retained or discarded in the hidden state. 

The GRU training algorithm also uses 
Backpropagation Through Time to update weights 
based on the gradients of the loss function across 
the entire time sequence. 

Step 1: Initialize weights and states - 
Randomly initialize the weights for the update 
gate 𝑊𝑊𝑧𝑧, reset gate 𝑊𝑊𝑟𝑟, candidate state 𝑊𝑊ℎ along 
with the biases 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. The initial hidden state 
h0  is usually set as a zero vector. 

Step 2: Forward pass - Iterate through the 
entire time sequence. At each time step 𝑡𝑡: 

• Update gate: 

𝑧𝑧𝑡𝑡 = σ(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑧𝑧)           (10) 

• Reset gate: 

𝑟𝑟𝑡𝑡 = σ(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑟𝑟)           (11) 

• Candidate hidden state: 

ℎ𝑡̃𝑡 = tanh(𝑊𝑊ℎ ⋅ [𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏ℎ)    (12) 

• New hidden state: 

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ∗ ℎ𝑡̃𝑡         (13) 

• Output prediction (if needed): 

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡)                (14) 

Step 3: Compute the loss function - Use 
an appropriate loss function based on the predicted 
output 𝑦𝑦𝑡𝑡 and the actual labels. 

Step 4: Backward pass – Backpropagation 
of the error from the last time steps to the first, 
computing the gradients of the loss function with 
respect to all weights 𝑊𝑊𝑧𝑧,𝑊𝑊𝑟𝑟,𝑊𝑊ℎ, 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. 

Step 5: Update weights - Use an 
optimization algorithm to update the weights 
based on the computed gradients, minimizing the 
loss function. 

Step 6: Repeat - The process of forward 
pass, loss computation, backward pass, and weight 
update is repeated for many epochs until the model 
converges or meets an early stopping criterion. 

Step 7: Prediction - Once trained, the GRU 
can take a new input sequence and compute the 
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LSTM training algorithm: LSTM is also 
trained using Backpropagation Through Time, an 
extension of backpropagation, to update weights 
based on the gradient of the loss function over the 
entire time series. 

Step 1: Initialize weights and states - 
Randomly initialize the weights for the forget gate 
𝑊𝑊𝑓𝑓, input gate 𝑊𝑊𝑖𝑖, output gate 𝑊𝑊𝑜𝑜, cell input 𝑊𝑊𝑐𝑐 
along with the biases 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. The hidden 
state ℎ0 and the cell state 𝐶𝐶0 are usually initialized 
as zero vectors. 

Step 2: Forward pass - Iterate through the 
entire time series. At each time step 𝑡𝑡: 
Forget gate: 

𝑓𝑓𝑡𝑡 = σ(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)           (3) 

Input gate: 

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)            (4) 

Cell input: 

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)            (5) 

Update cell state: 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡                (6) 

Output gate: 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)           (7) 

Hidden state: 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡)                    (8) 

Output prediction (if needed): 

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡)                 (9) 

Step 3: Compute the loss function - Use 
an appropriate loss function based on the predicted 
output 𝑦𝑦𝑡𝑡 and the actual label. 

Step 4: Backward pass – Backpropagation 
of errors from the last time step to the first 
(Backpropagation Through Time), computing the 
gradients of the loss with respect to all weights 
𝑊𝑊𝑓𝑓 ,𝑊𝑊𝑖𝑖,𝑊𝑊𝑜𝑜,𝑊𝑊𝑐𝑐 , 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. 

Step 5: Update weights - Use an 
optimization algorithm to update weights based on 
computed gradients, minimizing the loss function. 

Step 6: Repeat - Perform forward pass, loss 
computation, backward pass, and weight updates 
over many epochs until the model converges or 
meets early stopping criteria. 

Step 7: Prediction - Once trained, the 
LSTM can take a new input sequence and compute 
hidden states sequentially to predict the 
corresponding output sequence. 

GRU Algorithm 

GRU (Gated Recurrent Unit) is an 
improved recurrent neural network architecture, 
similar to LSTM but with a simpler structure. It 
combines certain gates to reduce the number of 
parameters while still maintaining the ability to 
remember long-term information. GRU has two 
main gates: the update gate and the reset gate, 
which control which information should be 
retained or discarded in the hidden state. 

The GRU training algorithm also uses 
Backpropagation Through Time to update weights 
based on the gradients of the loss function across 
the entire time sequence. 

Step 1: Initialize weights and states - 
Randomly initialize the weights for the update 
gate 𝑊𝑊𝑧𝑧, reset gate 𝑊𝑊𝑟𝑟, candidate state 𝑊𝑊ℎ along 
with the biases 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. The initial hidden state 
h0  is usually set as a zero vector. 

Step 2: Forward pass - Iterate through the 
entire time sequence. At each time step 𝑡𝑡: 

• Update gate: 

𝑧𝑧𝑡𝑡 = σ(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑧𝑧)           (10) 

• Reset gate: 

𝑟𝑟𝑡𝑡 = σ(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑟𝑟)           (11) 

• Candidate hidden state: 

ℎ𝑡̃𝑡 = tanh(𝑊𝑊ℎ ⋅ [𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏ℎ)    (12) 

• New hidden state: 

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ∗ ℎ𝑡̃𝑡         (13) 

• Output prediction (if needed): 

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡)                (14) 

Step 3: Compute the loss function - Use 
an appropriate loss function based on the predicted 
output 𝑦𝑦𝑡𝑡 and the actual labels. 

Step 4: Backward pass – Backpropagation 
of the error from the last time steps to the first, 
computing the gradients of the loss function with 
respect to all weights 𝑊𝑊𝑧𝑧,𝑊𝑊𝑟𝑟 ,𝑊𝑊ℎ ,𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. 

Step 5: Update weights - Use an 
optimization algorithm to update the weights 
based on the computed gradients, minimizing the 
loss function. 

Step 6: Repeat - The process of forward 
pass, loss computation, backward pass, and weight 
update is repeated for many epochs until the model 
converges or meets an early stopping criterion. 

Step 7: Prediction - Once trained, the GRU 
can take a new input sequence and compute the 
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LSTM training algorithm: LSTM is also 
trained using Backpropagation Through Time, an 
extension of backpropagation, to update weights 
based on the gradient of the loss function over the 
entire time series. 

Step 1: Initialize weights and states - 
Randomly initialize the weights for the forget gate 
𝑊𝑊𝑓𝑓, input gate 𝑊𝑊𝑖𝑖, output gate 𝑊𝑊𝑜𝑜, cell input 𝑊𝑊𝑐𝑐 
along with the biases 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. The hidden 
state ℎ0 and the cell state 𝐶𝐶0 are usually initialized 
as zero vectors. 

Step 2: Forward pass - Iterate through the 
entire time series. At each time step 𝑡𝑡: 
Forget gate: 

𝑓𝑓𝑡𝑡 = σ(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)           (3) 

Input gate: 

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)            (4) 

Cell input: 

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)            (5) 

Update cell state: 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡                (6) 

Output gate: 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)           (7) 

Hidden state: 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡)                    (8) 

Output prediction (if needed): 

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡)                 (9) 

Step 3: Compute the loss function - Use 
an appropriate loss function based on the predicted 
output 𝑦𝑦𝑡𝑡 and the actual label. 

Step 4: Backward pass – Backpropagation 
of errors from the last time step to the first 
(Backpropagation Through Time), computing the 
gradients of the loss with respect to all weights 
𝑊𝑊𝑓𝑓 ,𝑊𝑊𝑖𝑖,𝑊𝑊𝑜𝑜,𝑊𝑊𝑐𝑐 , 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. 

Step 5: Update weights - Use an 
optimization algorithm to update weights based on 
computed gradients, minimizing the loss function. 

Step 6: Repeat - Perform forward pass, loss 
computation, backward pass, and weight updates 
over many epochs until the model converges or 
meets early stopping criteria. 

Step 7: Prediction - Once trained, the 
LSTM can take a new input sequence and compute 
hidden states sequentially to predict the 
corresponding output sequence. 

GRU Algorithm 

GRU (Gated Recurrent Unit) is an 
improved recurrent neural network architecture, 
similar to LSTM but with a simpler structure. It 
combines certain gates to reduce the number of 
parameters while still maintaining the ability to 
remember long-term information. GRU has two 
main gates: the update gate and the reset gate, 
which control which information should be 
retained or discarded in the hidden state. 

The GRU training algorithm also uses 
Backpropagation Through Time to update weights 
based on the gradients of the loss function across 
the entire time sequence. 

Step 1: Initialize weights and states - 
Randomly initialize the weights for the update 
gate 𝑊𝑊𝑧𝑧, reset gate 𝑊𝑊𝑟𝑟, candidate state 𝑊𝑊ℎ along 
with the biases 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. The initial hidden state 
h0  is usually set as a zero vector. 

Step 2: Forward pass - Iterate through the 
entire time sequence. At each time step 𝑡𝑡: 

• Update gate: 

𝑧𝑧𝑡𝑡 = σ(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑧𝑧)           (10) 

• Reset gate: 

𝑟𝑟𝑡𝑡 = σ(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑟𝑟)           (11) 

• Candidate hidden state: 

ℎ𝑡̃𝑡 = tanh(𝑊𝑊ℎ ⋅ [𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏ℎ)    (12) 

• New hidden state: 

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ∗ ℎ𝑡̃𝑡         (13) 

• Output prediction (if needed): 

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡)                (14) 

Step 3: Compute the loss function - Use 
an appropriate loss function based on the predicted 
output 𝑦𝑦𝑡𝑡 and the actual labels. 

Step 4: Backward pass – Backpropagation 
of the error from the last time steps to the first, 
computing the gradients of the loss function with 
respect to all weights 𝑊𝑊𝑧𝑧,𝑊𝑊𝑟𝑟 ,𝑊𝑊ℎ ,𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. 

Step 5: Update weights - Use an 
optimization algorithm to update the weights 
based on the computed gradients, minimizing the 
loss function. 

Step 6: Repeat - The process of forward 
pass, loss computation, backward pass, and weight 
update is repeated for many epochs until the model 
converges or meets an early stopping criterion. 

Step 7: Prediction - Once trained, the GRU 
can take a new input sequence and compute the 
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LSTM training algorithm: LSTM is also 
trained using Backpropagation Through Time, an 
extension of backpropagation, to update weights 
based on the gradient of the loss function over the 
entire time series. 

Step 1: Initialize weights and states - 
Randomly initialize the weights for the forget gate 
𝑊𝑊𝑓𝑓, input gate 𝑊𝑊𝑖𝑖, output gate 𝑊𝑊𝑜𝑜, cell input 𝑊𝑊𝑐𝑐 
along with the biases 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. The hidden 
state ℎ0 and the cell state 𝐶𝐶0 are usually initialized 
as zero vectors. 

Step 2: Forward pass - Iterate through the 
entire time series. At each time step 𝑡𝑡: 
Forget gate: 

𝑓𝑓𝑡𝑡 = σ(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)           (3) 

Input gate: 

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)            (4) 

Cell input: 

𝑖𝑖𝑡𝑡 = σ(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)            (5) 

Update cell state: 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡̃𝑡                (6) 

Output gate: 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)           (7) 

Hidden state: 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh(𝐶𝐶𝑡𝑡)                    (8) 

Output prediction (if needed): 

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡)                 (9) 

Step 3: Compute the loss function - Use 
an appropriate loss function based on the predicted 
output 𝑦𝑦𝑡𝑡 and the actual label. 

Step 4: Backward pass – Backpropagation 
of errors from the last time step to the first 
(Backpropagation Through Time), computing the 
gradients of the loss with respect to all weights 
𝑊𝑊𝑓𝑓 ,𝑊𝑊𝑖𝑖,𝑊𝑊𝑜𝑜,𝑊𝑊𝑐𝑐 , 𝑏𝑏𝑓𝑓 , 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, 𝑏𝑏𝑐𝑐. 

Step 5: Update weights - Use an 
optimization algorithm to update weights based on 
computed gradients, minimizing the loss function. 

Step 6: Repeat - Perform forward pass, loss 
computation, backward pass, and weight updates 
over many epochs until the model converges or 
meets early stopping criteria. 

Step 7: Prediction - Once trained, the 
LSTM can take a new input sequence and compute 
hidden states sequentially to predict the 
corresponding output sequence. 

GRU Algorithm 

GRU (Gated Recurrent Unit) is an 
improved recurrent neural network architecture, 
similar to LSTM but with a simpler structure. It 
combines certain gates to reduce the number of 
parameters while still maintaining the ability to 
remember long-term information. GRU has two 
main gates: the update gate and the reset gate, 
which control which information should be 
retained or discarded in the hidden state. 

The GRU training algorithm also uses 
Backpropagation Through Time to update weights 
based on the gradients of the loss function across 
the entire time sequence. 

Step 1: Initialize weights and states - 
Randomly initialize the weights for the update 
gate 𝑊𝑊𝑧𝑧, reset gate 𝑊𝑊𝑟𝑟, candidate state 𝑊𝑊ℎ along 
with the biases 𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. The initial hidden state 
h0  is usually set as a zero vector. 

Step 2: Forward pass - Iterate through the 
entire time sequence. At each time step 𝑡𝑡: 

• Update gate: 

𝑧𝑧𝑡𝑡 = σ(𝑊𝑊𝑧𝑧 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑧𝑧)           (10) 

• Reset gate: 

𝑟𝑟𝑡𝑡 = σ(𝑊𝑊𝑟𝑟 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑟𝑟)           (11) 

• Candidate hidden state: 

ℎ𝑡̃𝑡 = tanh(𝑊𝑊ℎ ⋅ [𝑟𝑟𝑡𝑡 ∗ ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏ℎ)    (12) 

• New hidden state: 

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ∗ ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ∗ ℎ𝑡̃𝑡         (13) 

• Output prediction (if needed): 

𝑦𝑦𝑡𝑡 = output_layer(ℎ𝑡𝑡)                (14) 

Step 3: Compute the loss function - Use 
an appropriate loss function based on the predicted 
output 𝑦𝑦𝑡𝑡 and the actual labels. 

Step 4: Backward pass – Backpropagation 
of the error from the last time steps to the first, 
computing the gradients of the loss function with 
respect to all weights 𝑊𝑊𝑧𝑧,𝑊𝑊𝑟𝑟 ,𝑊𝑊ℎ ,𝑏𝑏𝑧𝑧, 𝑏𝑏𝑟𝑟, 𝑏𝑏ℎ. 

Step 5: Update weights - Use an 
optimization algorithm to update the weights 
based on the computed gradients, minimizing the 
loss function. 

Step 6: Repeat - The process of forward 
pass, loss computation, backward pass, and weight 
update is repeated for many epochs until the model 
converges or meets an early stopping criterion. 

Step 7: Prediction - Once trained, the GRU 
can take a new input sequence and compute the 
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and 20% reserved for testing. This partitioning 
strategy ensures that the models have sufficient 
data for effective learning while maintaining an 
independent subset for objective evaluation of 
generalization capability on unseen samples.

The input dataset consists of 54 
meteorological variables derived from ERA5 
reanalysis data including temperature, humidity, 
wind, and pressure at various atmospheric levels 
combined with surface observational time series 
from the Quy Nhon meteorological station. This 
integration captures both local-scale conditions 
and large-scale atmospheric circulation patterns, 
providing a comprehensive representation of 
the meteorological environment. The prediction 
target is the 24-hour accumulated rainfall, 
categorized into discrete rainfall intensity levels.

For efficient model training, rainfall 
observations were discretized into five distinct 
categories: (0) no rain, (1) rain, (2) moderate 
rain, (3) heavy rain, and (4) very heavy rain. 
These categorical labels were subsequently 
encoded using one-hot encoding to form five-
dimensional binary vectors, each representing a 
specific rainfall class.

Following model architecture design, 
parameter optimization was conducted through 
systematic tuning of the training algorithm, loss 
function, and key hyperparameters. Specifically, 
all models employed the Adam optimizer with 
an initial learning rate of α = 0.001. Adam, which 
combines the advantages of Momentum and 
RMSProp, dynamically adapts the learning rate 
during training, making it particularly effective 
for nonlinear and noisy meteorological datasets.8

The Categorical Cross-Entropy loss 
function was adopted as it is well-suited for multi-
class classification tasks, enabling the models 
to learn class probability distributions rather 
than rigid decision boundaries.8 The training 
process was executed over 70 epochs with a 
batch size of 64, a configuration that balances 
learning efficiency and overfitting prevention. 
This setup ensures stable gradient updates, 

effective utilization of computational resources, 
and robust model convergence, ultimately 
leading to improved predictive performance on 
independent test data.

Table 1. Comparison among the machine learning 
model.

Model Accuracy Kappa AUC-ROC

LSTM 0.8211 0.6462 0.9544

RNN 0.7675 0.5254 0.9196

GRU 0.8115 0.6290 0.9514

Table 1 presents the performance 
comparison of the three deep learning models—
LSTM, RNN, and GRU—in a multi-class 
classification problem. The results show that 
LSTM achieved the highest performance across 
all three evaluation metrics, with an Accuracy of 
0.8211, a Kappa of 0.6462, and an impressive 
AUC-ROC of 0.9544. This indicates that LSTM 
not only delivers high predictive accuracy but 
also effectively distinguishes between classes, 
especially in the context of complex data.

GRU also demonstrated competitive 
performance, with an Accuracy of 0.8115, a 
Kappa of 0.6290, and an AUC-ROC of 0.9514 
only slightly lower than LSTM. This suggests 
that GRU is an efficient choice when balancing 
accuracy and computational complexity is 
important.

In contrast, RNN achieved significantly 
lower results, with an Accuracy of only 0.7675, 
a Kappa of 0.5254, and an AUC-ROC of 0.9196. 
This gap is particularly evident in the Kappa 
score, indicating that RNN struggles to accurately 
classify classes when dealing with imbalanced 
data. Notably, while the AUC-ROC scores of 
all three models exceed 0.9, the differences in 
Accuracy and Kappa indicate that LSTM and 
GRU handle the task more effectively than the 
traditional RNN.

These results suggest that modern neural 
network architectures such as LSTM and GRU 
are better suited for multi-class classification 
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problems than basic RNNs, due to their ability 
to capture long-term dependencies in time 
series data.

Table 2. Regression error comparison of neural 
network models.

Model RMSE MAE

LSTM 0.5024 0.2012

RNN 0.5766 0.2617

GRU 0.5106 0.2096

Table 2 presents the RMSE and MAE for 
three neural network models: LSTM, RNN, and 
GRU. The LSTM achieved the lowest errors 
(RMSE = 0.5024, MAE = 0.2012), followed 
by the GRU (RMSE = 0.5106, MAE = 0.2096), 

while the RNN exhibited the highest errors 
(RMSE = 0.5766, MAE = 0.2617). The average 
deviation between predicted and true labels is 
approximately 0.2–0.5 units on the 0–4 scale, 
indicating that all models reliably forecast 
rainfall categories. Overall, models with gating 
mechanisms (LSTM and GRU) outperform 
the standard RNN in capturing temporal 
dependencies and reducing prediction errors.

Confusion Matrix

Analysis of the confusion matrix in 
Figure 7 for the three deep learning models 
(LSTM, RNN, GRU) in the rainfall classification 
task (0: no rain, 1: rain, 2: moderate rain, 3: heavy 
rain, 4: very heavy rain) reveals distinct patterns.

Figure 7. Confusion Matrices for LSTM, RNN and GRU Models.

For the LSTM model, classification 
performance decreases as rainfall intensity 
increases: it achieves the highest accuracy with 
16281 correctly classified cases for the no-rain 
class (0), drops to 5726 for the light rain class 
(1), and only 84 correct predictions for the very 
heavy rain class (4). Notably, the model tends 
to confuse rainfall classes, as evidenced by 37 
very heavy rain cases (4) being misclassified 
as light rain (1) and 2 cases as no rain (0). This 
outcome reflects a common challenge for models 
when dealing with minority classes that occur 
infrequently in the dataset, especially extreme 
rainfall events. The large disparity in the number 
of correct predictions between the majority 
class (no rain) and the minority classes (various 
rainfall types) highlights the need to apply data 
imbalance handling techniques to improve the 
model’s overall performance.

The RNN model demonstrates the most 
unstable performance among the three, with gaps 
in its confusion matrix. Although it achieves 
16086 correct predictions for the no-rain 
class (0), it misclassifies up to 4900 cases. Its 
performance drops sharply for rainfall classes, 
with only 4970 correct predictions for light rain 
(1) and 102 for very heavy rain (4).

The GRU model shows inconsistent 
classification performance across classes. For 
the no-rain class (0), it performs well with 
16075 correct predictions, but a wide range of 
abnormal values (1276–5748) suggests potential 
overfitting or issues in the data normalization 
process. Performance declines significantly 
for rainfall classes: the moderate rain class (2) 
achieves only 1216 correct predictions, heavy 
rain (3) drops to 398, and the very heavy rain 
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class (4) is almost entirely unrecognized, with 
correct predictions ranging from 0–4. This steep 
decline in accuracy with increasing rainfall 
intensity, along with extremely low values at 
the bottom of the matrix, points to limitations in 
input data quality or a suboptimal preprocessing 
pipeline, especially for extreme rainfall cases.

Overall, all three models struggled to 
accurately classify minority classes, with LSTM 
producing the most stable results despite being 
imperfect, while RNN and GRU exhibited 

several anomalies that require further inspection 
of data quality and training processes. The large 
disparity in the number of predictions across 
classes highlights the issue of data imbalance.

Training progress - Loss log

Analysis of the learning curves (Figure 8) 
shows a clear difference in the training processes 
of the three models: LSTM, RNN, and GRU. All 
three display a general downward trend in loss as 
the number of epochs increases, but with distinct 
characteristics.

Figure 8. Training progress and loss log for LSTM, RNN, and GRU.

The LSTM model shows the most 
stable learning curve, with test loss decreasing 
gradually from 0.75 to 0.575 after 70 epochs, 
indicating a slow yet steady learning process. 
Notably, the gap between train loss and test loss 
is relatively small, suggesting that the model 
suffers little from overfitting.

RNN improves more quickly in the early 
stages, with test loss dropping from 0.65 to 0.45 
in the first 30 epochs. However, it later exhibits 
strong fluctuations (especially between epochs 
40–50), reflecting the inherent instability of the 
traditional RNN architecture.

GRU demonstrates a balance between the 
two above learning faster than LSTM but with 
more stability than RNN. Its test loss decreases 
steadily from 0.65 to 0.30. However, the sudden 

drop in test loss at epoch 20 (from 0.60 to 0.35) 
followed by subsequent oscillations may 
point to optimization issues or an unsuitable 
learning rate.

In summary, LSTM shows an advantage 
in stability, GRU learns faster but is less stable, 
and RNN struggles to maintain consistent 
performance across epochs. These results align 
with theory: LSTM is designed to address the 
vanishing gradient problem faced by traditional 
RNNs, while GRU is a simplified version of 
LSTM with fewer parameters.

Feature Importance

Analysis of Figure 9 shows the contribution 
levels of input features for three deep learning 
models: LSTM, RNN, and GRU, highlighting 
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the 15 most important features for each model. 
The importance scores were determined using 
the permutation importance method, which 
measures the decrease in model accuracy when 
the values of a particular feature are randomly 
shuffled. A greater drop in accuracy indicates 
higher importance, reflecting the extent to which 
each meteorological variable influences the 
model’s predictive performance.

For LSTM, temperature-related factors 
at various pressure levels, such as t_750hPa, 
t_950hPa, t_300hPa, and the Month variable, 
rank at the top, indicating that this model focuses 
on temperature variations across both time and 
atmospheric height. Additionally, humidity 
features like e_700hPa and wind components 
such as v_600hPa also play significant roles.

For RNN, features related to surface and 
lower-level wind, such as v100 and v10n, along 
with mid and low-level temperatures (t_750hPa, 
t_900hPa) dominate. Notably, actual rainfall (R) 
and 24-hour pressure variation (DELTA_P_24H) 
are among the top features, reflecting the RNN’s 
ability to strongly leverage local and direct 
weather signals.

Meanwhile, GRU prioritizes v100 and 
u_600hPa (zonal wind at 600hPa), combined 
with temperatures at multiple levels (t_900hPa, 
t_750hPa, t_650hPa) and mid-level humidity 

Figure 9. Importance of features.

(e_700hPa). The 24-hour pressure variation 
(DELTA_P_24H) is also among the important 
features, highlighting the role of large-scale 
dynamic factors.

Overall, all three models utilize a 
combination of temperature, wind, and pressure 
information, but LSTM emphasizes multi-level 
temperature analysis, RNN is more sensitive to 
surface wind and rainfall signals, while GRU 
balances wind, temperature, and pressure. These 
differences reflect the distinct strategies each 
architecture employs in rainfall prediction.
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4. CONCLUSION

The study applied three deep neural network 
architectures LSTM, RNN, and GRU to classify 
rainfall by intensity, using observational data from 
the Quy Nhon meteorological station combined 
with ERA5 reanalysis data. The results indicate 
that all three models achieved good forecasting 
performance, with LSTM demonstrating 
superior accuracy, class discrimination ability, 
and training stability. GRU performed closely 
to LSTM, offering a balanced choice between 
accuracy and computational cost, while the 
traditional RNN was less stable and faced 
limitations in classifying minority classes.

Feature importance analysis revealed 
that the temporal factor (Month) plays a 
prominent role, clearly reflecting the seasonal 
nature of rainfall in the study area. In addition, 
meteorological features such as wind, 
temperature, humidity, and pressure variations 
at multiple atmospheric levels also contributed 
significantly, with each model tending to exploit 
information differently: LSTM focused on multi-
level temperature variations, RNN was more 
sensitive to surface wind and rainfall signals, 
and GRU maintained a balance between wind, 
temperature, and pressure factors.

However, there exist a number of 
practical limitations in this study. Although 
ERA5 reanalysis data supplement large-scale 
information, they exhibit a time lag in updates, 
causing the model to rely primarily on surface 
observations and limiting its ability to respond 
rapidly to short-term atmospheric fluctuations. 
Moreover, model performance may decline 
over time if not periodically updated, due to 
climate change and evolving structures of 
meteorological variables. Therefore, regularly 
incorporating new data, retraining the model, 
and integrating real-time observations with 
multi-layer forecasting models and advanced 

deep learning techniques will be crucial for 
improving accuracy, adaptability, and resilience 
to extreme weather event.
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