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TOM TAT

Nghién ctru nay st dung cac thuat toan hoc sau dé xay dung mo hinh dy bao trén cac tap dir li¢u thuc té co
dAu hiéu mua, nham dy doan c6 mua hay khong tai mot thoi diém cu thé cling nhu phan tich cach mua xuét hién
dua trén cac yéu td lién quan. Nghién ciru ciing hudéng dén hd trg du bao chinh xac lugng mua roi xudng tai mot
dia diém vao mot thoi diém xéac dinh. Trong nghién ctru, chung t6i xay dung mo hinh hoc sau nham hd trg dy bao
thoi tiét, dac biét 1a du doan chinh xac lrong mua - mot bai toan luén thach thirc khong chi ddi voi cac co quan
du bao tai Viét Nam ma con ddi voi cac hé thdng du bao tién tién trén thé gidi. Sir dung tap dit liéu thu thap dugc,
chiing t6i tién hanh mé ta cac thudc tinh ctia cac truong dit lidu, ciing nhu phén tich cac tham s6 ¢6 tuong quan dén
hién tugng mua. Sau do, ching toi 4p dung thuat toan hoc sau dé xay dung mé hinh dy doan kha ning c6 mua c6
thé xay ra hay khong va xay ra nhu thé nao? Cac két qua thu dugc c¢6 thé duoc img dung trong thuc té dé du doan
lwong mua tai mot dia diém va thoi diém cu thé tir dir liéu dau vao 1a dir liéu dau hiéu mua duogc trich xuét tir co
sO dit liéu dy béo thoi tiét. Tir 46, nghién ciru mé ra tiém ning tmg dung tri tué nhén tao trong linh vuc du bao khi
tuong nham nang cao do chinh xac va giam thiéu rui ro do thoi tiét cuc doan gay ra.

Tw khéa: Mo hinh dw bao muwea, thudt toan LSTM, thudt toan RNN, thudt toan GRU, thudt toan hoc sdu.
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ABSTRACT

This study aims to employ deep learning algorithms to construct predictive models using real-world
datasets containing indicators of rainfall. The objective is to determine the occurrence of rainfall at a specific point
in time and to analyze the underlying factors contributing to its onset. Furthermore, the research is directed toward
improving the accuracy of quantitative rainfall prediction for a given location and time. This study has developed
a deep learning-based framework for weather forecasting with a particular focus on accurate rainfall prediction -
a task that remains highly challenging not only for meteorological agencies in Vietnam but also for state-of-the-
art forecasting systems worldwide. Using the collected dataset, we conducted descriptive statistical analyses to
characterize its properties and investigated the parameters exhibiting correlations with rainfall events. Based on
these findings, deep learning algorithms were applied to develop a classification model capable of predicting
the probability of rainfall occurrence. The experimental results demonstrate that the proposed model can be
applied to operational scenarios for forecasting rainfall at specific locations and times, utilizing rainfall indicators
extracted from meteorological forecast databases. The outcomes of this research highlight the potential of artificial
intelligence techniques in meteorological applications, offering the prospect of enhanced prediction accuracy and
reduced risks associated with extreme weather phenomena.

Keywords: Rainfall prediction model, LSTM algorithm, RNN algorithm, GRU algorithm, deep learning algorithm.

attributes with ERAS reanalysis data, and applied
suitable deep learning algorithms to construct
models for rainfall prediction and related

1. INTRODUCTION

One of the critical inputs for hydrological

computation models is rainfall forecasting. ) . .
. D . influencing factors. In this paper, we present a
Rainfall prediction is an inherently complex task, ) ] i
. . . . rainfall forecasting model developed using 16
especially when forecasting for specific locations o i
. years of data collected from monitoring stations
across different months and seasons. To develop .
. . and ERAS reanalysis datasets. The forecast
a low-cost yet effective method that delivers ) o
. outputs from this model can support decision-
acceptable forecasting accuracy, we employed . . .
. . . . . making in operational forecasting and other
machine learning techniques to build a daily

rainfall forecasting model. Unlike traditional
approaches, this study utilized datasets collected
from monitoring stations, combining observed
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related tasks at monitoring station locations.

Artificial Intelligence (Al) is playing an
increasingly important role in meteorology and
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hydrology due to its capability to process large
volumes of data from observation stations,
forecasts, and historical weather records. Deep
Learning, a subset of Al, employs multi-layer
neural networks to learn complex patterns from
data and construct predictive models.

In this study, we developed deep learning
models based on the Long Short-Term Memory
(LSTM) architecture to predict the occurrence
and probability of rainfall. Model optimization
was performed through the analysis of evaluation
metrics such as the confusion matrix, ROC-AUC
curve, and Precision—Recall curve, alongside
the identification of key variables influencing
predictive performance.

We also integrated meteorological data
from observation stations with deep learning
algorithmsto constructarainfall forecastingmodel
that can assist meteorologists in their forecasting
tasks and be transferable to other stations
when necessary. By combining meteorological
expertise with observational datasets, the model
can analyze factors influencing rainfall based on
meteorological parameters, thereby providing
predictions on rainfall occurrence and the
expected rainfall intensity.

2. RAIN FORECASTING PROBLEMS
2.1. Rain forecasting problem

Currently, accurately predicting rainfall at a
specific location and time remains a significant
challenge for meteorological agencies worldwide.

Rainfall is essentially the result of
atmospheric processes in which water vapor
in the atmosphere undergoes a phase change
(condensation) into solid or liquid forms such as
water, ice, or snow and falls to the ground under
the influence of gravity. During the process
of condensation and descent to the ground,
raindrops are affected by horizontal air currents.
Due to differences in environmental conditions,
the raindrops themselves may partially evaporate
during their fall.!

In recent years, meteorology and
hydrology have made significant progress in
forecasting large-scale heavy rainfall events.

Such phenomena can be predicted 2-3 days in
advance with an accuracy of about 70%, and
in some cases, early warnings can be issued
5-7 days ahead. Forecast information for large-
scale heavy rainfall events is generally reliable
regarding the timing of rainfall onset, the
affected areas, and the ending time of the event.

Early forecasting of large-scale heavy
rainfall plays a crucial role in supporting flood,
flash flood, landslide, and inundation warnings.
These alerts are communicated to authorities and
the public to enable proactive response planning
and minimize damage.

However, when it comes to quantitative
rainfall forecasts (for specific locations and
times), current numerical weather prediction
technology still faces many limitations. Notably,
there are constraints in spatial resolution due
to the use of numerous empirical parameters
in physical models, as well as a shortage of
observational input data particularly over oceans
and at higher atmospheric layers.

Estimates indicate that the reliability of
point-based quantitative forecasts within a 1-3
day range is only about 40-60% for light and
moderate rainfall events (less than 16 mm/day).

In addition to improving the physical
modeling capabilities of forecasting systems, the
meteorological sector also focuses on enhancing
the training and expertise of forecasters especially
in utilizing intelligent decision-support systems.
This allows for the integration of wvarious
types of observations and forecast products,
enabling fine-tuning of rainfall and temperature
predictions, as well as leveraging ensemble
forecasting and other decision-support tools.>?

2.2. Rainfall database

In this study, we use data from the Quy Nhon
Meteorological Station a Class I meteorological
station with the international code “48870”. This
station is internationally recognized as a high-
accuracy data source and is frequently used in
weather forecasting models.

The dataset spans from 2009 to 2024 and
includes hourly observational variables such
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as temperature, humidity, station pressure, and
total rainfall. In addition, reanalysis data from
ERAS is incorporated, comprising 54 variables,
primarily related to temperature, humidity,
and wind vectors in the u and v directions at
atmospheric pressure levels ranging from 950 hPa
to 300 hPa. All data are organized as time series
by hour, day, and month.

The objective of using these datasets is
to explore and analyze the relationship between
rainfall and other meteorological factors in the
Quy Nhon area. Rainfall classification in the
dataset follows the standards of the Vietnam
Meteorology and Hydrology sector as follows:

* No rain = Omm/day

* Rain < 16mm/day

* 16mm/day < Moderate rain < 50mm/day
* 50mm/day < Heavy rain < 100mm/day
* Very heavy rain > 100mm/day

show that “No rain” has
the highest occurrence with 86601 cases,
followed by “Rain” with 40752 cases, and then
“Moderate rain” with 9157 cases. “Heavy rain”
is significantly less frequent with 2476 cases,

and finally, “Very heavy rain” has the fewest
occurrences with 1192 cases.

Statistics
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Figure 1. The distribution of rainfall categories in the
dataset.

From Figure 1, it is evident that among
100 sampled values, there are 62 “No rain”
cases, 29 “Rain” cases, 6 “Moderate rain” cases,
2 “Heavy rain” cases, and only 1 “Very heavy
rain” case. This indicates an uneven distribution
of data among rainfall categories, with heavier
rainfall events occurring less frequently.

Monthly Distribution of Rainfall Types
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Figure 2. The distribution of rainfall categories by month.
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Based on Figure 2, heavy and very heavy
rainfall events are primarily concentrated between
September and December, with a pronounced
increase in their occurrence during September,
October, and November. This period corresponds
to the region’s main rainy season, when active
weather systems deliver abundant precipitation.
In these months, not only does the number of
rainfall events rise significantly, but rainfall
intensity also increases, contributing substantially
to the region’s annual total precipitation.

Specifically, the number of moderate,
heavy, and very heavy rainfall events increases
sharply from September to December, whereas
the rest of the year is dominated by no rain or rain
events. This highlights a clear seasonal pattern in
rainfall distribution within the study area.

As shown in Figure 3, rainfall events
occur most frequently in the temperature

range of 24°C to 30°C, with particularly high
concentrations in the 24-26°C and 26-28°C
intervals. In these temperature ranges, the total
number of rainfall samples (from light to very
heavy) accounts for the majority compared to
other temperature groups. Notably, very heavy
rainfall events almost exclusively occur within
the 24-26°C and 26-28°C intervals, indicating
that this temperature range is the most favorable
for extreme rainfall. Conversely, at lower
temperatures (< 22°C) or higher temperatures
(> 30°C), the frequency of rainfall events
especially heavy and very heavy declines
sharply, with almost no extreme rainfall observed
above 30°C. This suggests that samples with
excessively low or high temperatures are less
likely to be associated with rainfall, particularly
intense rainfall events.

Distribution of Rain Types by Temperature Group
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Figure 3. The distribution of rainfall types across temperature groups.
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Figure 4 shows that the frequency of
rainfall events (from light rain to very heavy
rain) increases with higher humidity levels. In
the 80-90% humidity range, the total number of
rainy samples is the highest, with light rain and
moderate rain dominating. This indicates that
this humidity band is ideal for rain formation.
The 70-80% range comes next, also showing
a relatively large number of rainy samples,
reflecting the clear trend that higher humidity is
associated with a higher likelihood of rain.

Notably, heavy and very heavy rainfall
events occur mainly in the two highest humidity
groups 80-90% and >90% and are almost absent

in lower humidity groups. This suggests that
extreme rainfall events often happen when the
air holds a very high moisture content, providing
favorable conditions for intense atmospheric
condensation. In contrast, humidity groups
below 60% and 60-70% record relatively few
rainy samples, with heavy and very heavy
rain almost non-existent, indicating that drier
environments have little potential to produce
rainfall, especially extreme events. Moreover,
the >90% humidity group is the only one with
the highest number of very heavy rain samples
in the entire chart, emphasizing the role of
extreme humidity in triggering severe weather
phenomena.

Distribution of Rain Types by Humidity Group
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Figure 4. Distribution of rainfall types by humidity group.
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In Figure 5, rainfall samples are
concentrated mainly in the pressure range of
1005-1015 mb, with the 1005-1010 mb and 1010-
1015 mb groups clearly dominating. This range
not only shows a high number of rainy samples
but also a noticeable increase in strong rainfall
events, reflected in the frequent appearance of
orange and red bars representing heavy and very
heavy rain. This suggests that this pressure range
is favorable for atmospheric conditions that lead
to the formation and growth of convective rain

clouds.

On the other hand, at the extremes of
pressure specifically <1000 mb and >1025 mb the

Distribution of Rain Ty,

number of rainy samples is very low, and heavy
rainfall events are almost absent, indicating that
both very low and very high pressure are not
ideal environments for rain. The 1015-1020 mb
group still maintains a considerable number
of rainy samples but shows a slight decrease
compared to the preceding range, suggesting that
when pressure exceeds 1015 mb, the likelihood
of rain begins to decline. Similarly, the 1020-
1025 mb and >1025 mb groups are dominated
by non-rain samples, reflecting a more stable
atmosphere with fewer conditions supporting
rainfall development.
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Figure 5. Distribution of rainfall types by pressure group.
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Because the features in the dataset are
independent, analyzing their correlations is
essential to assess both their interrelationships
and their relationship with the target variable
in this case, the likelihood of rain the next day
(rain_tomorrow).

Correlation matrix between factors

Month

Rain_DB
h

Wonth T U P R Rain DB
Figure 6. Correlation matrix between factors.

From Figure 6, we observe that humidity,
month, and rainfall all show positive correlations
with the probability of rain on the following
day, with previous-day rainfall exhibiting the
strongest positive correlation with next-day
rain. In contrast, factors such as temperature
have a negative correlation with the likelihood
of rain. Notably, atmospheric pressure shows a
very weak correlation with next-day rain, with a
coefficient of only 0.09.

3. ALGORITHMS AND PREDICTION
MODELS

3.1. Deep learning algorithms

Deep learning is an important branch of artificial
intelligence that focuses on building and training
multi-layer neural networks to automatically
learn complex features from data.

Unlike traditional machine learning
methods, deep learning can extract features
directly from raw data, reducing dependence on
manual preprocessing steps while effectively
capturing complex nonlinear relationships
between input variables.

https://doi.org/10.52111/qnjs.2026.20111

Thanks to these capabilities, deep learning
has become a powerful tool in fields that require
processing large and complex datasets, such as
computer vision, natural language processing,
and especially time series forecasting in
meteorology and hydrology.®

In the context of weather forecasting and
hydrometeorological phenomena, deep learning
algorithms are widely applied to predict variables
related to rainfall, temperature, humidity,
pressure, and other meteorological parameters.

Sequential neural networks such as RNNs
(Recurrent Neural Networks) allow the model
to retain information from previous time steps,
while more advanced variants such as LSTM
(Long Short-Term Memory) and GRU (Gated
Recurrent Unit) are specifically designed to
address the vanishing gradient problem, enabling
the learning of long-term dependencies in time
series data.®

The choice of an appropriate deep learning
algorithm depends on the specific characteristics
of the problem and the data.

For example, with datasets containing
long time series and requiring the capture of
complex relationships among meteorological
variables, LSTM is often preferred for its long-
term memory capabilities, while GRU can be
used when reducing the number of parameters
and speeding up training is a priority. Thus, deep
learning not only offers more accurate forecasting
but also provides flexibility in uncovering hidden
features in hydrometeorological data.

RNN Algorithm

RNN (Recurrent Neural Network) is a
neural network architecture specifically designed
to process time series data, where the current
value depends on previous values. Unlike
traditional neural networks, RNNs have the
ability to retain information from previous time
steps through a hidden state, enabling the model
to predict future values based on historical data.’
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RNN Training Algorithm: RNNs are
trained using Backpropagation Through Time
(BPTT), an extension of backpropagation, to
update weights based on the gradient of the
loss function with respect to the entire time

sequence:*

Step 1: Weight Initialization - Randomly
initialize the weights 7, (hidden state weights),
W, (input weights), W, (output weights)
along with biases b (hidden state bias) and ¢
(output bias).

Step 2: Forward pass - Iterate through
the entire time sequence. At each time step ¢,
compute the hidden state h; based on the current
input x; and the previous hidden state h;
according to the formula:

hy = tanh(Wyxy + Wphe_1 +b) (1)

Then, compute the predicted output y:
from the hidden state h¢:

Ve = softmax(Wyht + c) 2)

Step 3: Compute the loss function -
Use an appropriate loss function based on the
predicted output y; and the actual label yt

Step4: Backward pass—Backpropagation
of the error from the final time steps to the initial
ones, computing the gradient of the loss function
with respect to the weights Wy, Wy, W), b, c.

Step 5: Update weights - Use an
optimization algorithm to update the weights
based on the computed gradients, minimizing
the loss function.

Step 6: Repeat - The process of forward
pass, loss calculation, backward pass, and weight
updates is repeated over many epochs until the
model converges or meets the early stopping
criterion.

Step 7: Prediction - Once the model is
trained, the RNN can take a new input sequence
and continuously compute the hidden states to
predict the corresponding output sequence.

LSTM Algorithm

LSTM (Long Short-Term Memory) is
an improved recurrent neural network (RNN)
architecture designed to handle long time-
series data and overcome the vanishing gradient
problem often found in traditional RNNs.
LSTM can retain long-term information thanks
to its gating mechanism, which controls which
information is kept, updated, or discarded in the
cell state.>’

LSTM training algorithm: LSTM is also
trained using Backpropagation Through Time, an
extension of backpropagation, to update weights
based on the gradient of the loss function over
the entire time series.

Step 1: Initialize weights and states -
Randomly initialize the weights for the forget
gate Wy, input gate W, output gate W,, cell
input W, along with the biases b; b;, bo, b.. The
hidden state 4o and the cell state Cy are usually
initialized as zero vectors.

Step 2: Forward pass - Iterate through
the entire time series. At each time step t:
Forget gate:
fe = o(Ws - [he—1, %] + by) &)
Input gate:
it = G(Wl . [ht—ll xt] + bl) (4)
Cell input:
ip = o(W; - [he—q,x] + by) (%)
Update cell state:
Ce = fe * Cemq + i % C (6)
Output gate:
0 = o(Wy + [he—1, x¢] + bo) (7
Hidden state:
hy = o, * tanh(C;) (®)
Output prediction (if needed):
y¢ = output_layer(h;) 9)
Step 3: Compute the loss function -

Use an appropriate loss function based on the
predicted output y; and the actual label.
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Step4: Backward pass—Backpropagation
of errors from the last time step to the first
(Backpropagation Through Time), computing
the gradients of the loss with respect to all
weights Wy, Wi, W,, W., bg, b;, b,, be.

Step 5: Update weights - Use an
optimization algorithm to update weights based
on computed gradients, minimizing the loss
function.

Step 6: Repeat - Perform forward pass,
loss computation, backward pass, and weight
updates over many epochs until the model
converges or meets early stopping criteria.

Step 7: Prediction - Once trained, the
LSTM can take a new input sequence and
compute hidden states sequentially to predict the
corresponding output sequence.

GRU Algorithm

GRU (Gated Recurrent Unit) is an
improved recurrent neural network architecture,
similar to LSTM but with a simpler structure. It
combines certain gates to reduce the number of
parameters while still maintaining the ability to
remember long-term information. GRU has two
main gates: the update gate and the reset gate,
which control which information should be
retained or discarded in the hidden state.

The GRU training algorithm also uses
Backpropagation Through Time to update
weights based on the gradients of the loss
function across the entire time sequence.

Step 1: Initialize weights and states -
Randomly initialize the weights for the update
gate W-, reset gate W,, candidate state W), along
with the biases b., b,, b,. The initial hidden state
ho is usually set as a zero vector.

Step 2: Forward pass - Iterate through
the entire time sequence. At each time step ¢:

» Update gate:
ze = o(Wy - [he—1,xc] + by) (10)

* Reset gate:
re = oW, - [he—y, x] + by) (11)

https://doi.org/10.52111/qnjs.2026.20111

+ Candidate hidden state:
he = tanh(Wy, - [r * he_y, %] + b)) (12)
» New hidden state:
he=(1=2z)*hey +2, % he (13)
* Output prediction (if needed):
y: = output_layer(h;) (14)

Step 3: Compute the loss function -
Use an appropriate loss function based on the
predicted output y; and the actual labels.

Step4: Backward pass—Backpropagation
of the error from the last time steps to the first,
computing the gradients of the loss function with
respect to all weights W., W,, Wy, b., b,, b.

Step 5: Update weights - Use an
optimization algorithm to update the weights
based on the computed gradients, minimizing
the loss function.

Step 6: Repeat - The process of forward
pass, loss computation, backward pass, and
weight update is repeated for many epochs until
the model converges or meets an early stopping
criterion.

Step 7: Prediction - Once trained, the
GRU can take a new input sequence and
compute the hidden state continuously to predict
the corresponding output sequence.

3.2. Prediction models using deep learning

The dataset from the Quy Nhon Meteorological
Station, after being cleaned and encoded to
convert categorical features into numerical
values, can be used as input for deep learning
models.The objective is to train and compare the
performance of three deep learning algorithms:
LSTM, RNN, and GRU. These models are highly
suitable for time series data and have proven
effective in weather forecasting tasks thanks to
their ability to capture temporal dependencies,
automatically extract features from raw data, and
model complex nonlinear relationships between
variables.*’

The processed dataset was divided into
two subsets, with 80% allocated for training
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and 20% reserved for testing. This partitioning
strategy ensures that the models have sufficient
data for effective learning while maintaining an
independent subset for objective evaluation of
generalization capability on unseen samples.

The input dataset consists of 54
meteorological variables derived from ERAS
reanalysis data including temperature, humidity,
wind, and pressure at various atmospheric levels
combined with surface observational time series
from the Quy Nhon meteorological station. This
integration captures both local-scale conditions
and large-scale atmospheric circulation patterns,
providing a comprehensive representation of
the meteorological environment. The prediction
target is the 24-hour accumulated rainfall,
categorized into discrete rainfall intensity levels.

For efficient model training, rainfall
observations were discretized into five distinct
categories: (0) no rain, (1) rain, (2) moderate
rain, (3) heavy rain, and (4) very heavy rain.
These categorical labels were subsequently
encoded using one-hot encoding to form five-
dimensional binary vectors, each representing a
specific rainfall class.

Following model architecture design,
parameter optimization was conducted through
systematic tuning of the training algorithm, loss
function, and key hyperparameters. Specifically,
all models employed the Adam optimizer with
an initial learning rate of o =0.001. Adam, which
combines the advantages of Momentum and
RMSProp, dynamically adapts the learning rate
during training, making it particularly effective
for nonlinear and noisy meteorological datasets.®

The Categorical Cross-Entropy loss
function was adopted as it is well-suited for multi-
class classification tasks, enabling the models
to learn class probability distributions rather
than rigid decision boundaries.® The training
process was executed over 70 epochs with a
batch size of 64, a configuration that balances
learning efficiency and overfitting prevention.
This setup ensures stable gradient updates,

effective utilization of computational resources,
and robust model convergence, ultimately
leading to improved predictive performance on
independent test data.

Table 1. Comparison among the machine learning

model.
Model | Accuracy Kappa AUC-ROC
LSTM 0.8211 0.6462 0.9544
RNN 0.7675 0.5254 0.9196
GRU 0.8115 0.6290 0.9514

Table 1
comparison of the three deep learning models—
LSTM, RNN, and GRU—in a multi-class
classification problem. The results show that

presents the performance

LSTM achieved the highest performance across
all three evaluation metrics, with an Accuracy of
0.8211, a Kappa of 0.6462, and an impressive
AUC-ROC of 0.9544. This indicates that LSTM
not only delivers high predictive accuracy but
also effectively distinguishes between classes,
especially in the context of complex data.

GRU also demonstrated competitive
performance, with an Accuracy of 0.8115, a
Kappa of 0.6290, and an AUC-ROC of 0.9514
only slightly lower than LSTM. This suggests
that GRU is an efficient choice when balancing
accuracy and computational complexity is
important.

In contrast, RNN achieved significantly
lower results, with an Accuracy of only 0.7675,
a Kappa of 0.5254, and an AUC-ROC of 0.9196.
This gap is particularly evident in the Kappa
score, indicating that RNN struggles to accurately
classify classes when dealing with imbalanced
data. Notably, while the AUC-ROC scores of
all three models exceed 0.9, the differences in
Accuracy and Kappa indicate that LSTM and
GRU handle the task more effectively than the
traditional RNN.

These results suggest that modern neural
network architectures such as LSTM and GRU
are better suited for multi-class classification
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problems than basic RNNs, due to their ability
to capture long-term dependencies in time
series data.

Table 2. Regression error comparison of neural
network models.

Model RMSE MAE
LSTM 0.5024 0.2012
RNN 0.5766 0.2617
GRU 0.5106 0.2096

Table 2 presents the RMSE and MAE for
three neural network models: LSTM, RNN, and
GRU. The LSTM achieved the lowest errors
(RMSE = 0.5024, MAE = 0.2012), followed
by the GRU (RMSE = 0.5106, MAE = 0.2096),

Confusion Matrix - LSTM
- - -
2088 728 310 » s 2903 w0

3 g 3
preicted Label Precicted Label

cccccccccccccccc

while the RNN exhibited the highest errors
(RMSE = 0.5766, MAE = 0.2617). The average
deviation between predicted and true labels is
approximately 0.2-0.5 units on the 0—4 scale,
indicating that all models reliably forecast
rainfall categories. Overall, models with gating
mechanisms (LSTM and GRU) outperform
the standard RNN in capturing temporal
dependencies and reducing prediction errors.

Confusion Matrix

Analysis of the confusion matrix in
Figure 7 for the three deep learning models
(LSTM, RNN, GRU) in the rainfall classification
task (0: no rain, 1: rain, 2: moderate rain, 3: heavy
rain, 4: very heavy rain) reveals distinct patterns.

nnnnnnnnnnnnnnnnnnn

Figure 7. Confusion Matrices for LSTM, RNN and GRU Models.

For the LSTM model, classification
performance decreases as rainfall intensity
increases: it achieves the highest accuracy with
16281 correctly classified cases for the no-rain
class (0), drops to 5726 for the light rain class
(1), and only 84 correct predictions for the very
heavy rain class (4). Notably, the model tends
to confuse rainfall classes, as evidenced by 37
very heavy rain cases (4) being misclassified
as light rain (1) and 2 cases as no rain (0). This
outcome reflects a common challenge for models
when dealing with minority classes that occur
infrequently in the dataset, especially extreme
rainfall events. The large disparity in the number
of correct predictions between the majority
class (no rain) and the minority classes (various
rainfall types) highlights the need to apply data
imbalance handling techniques to improve the
model’s overall performance.

https://doi.org/10.52111/qnjs.2026.20111

The RNN model demonstrates the most
unstable performance among the three, with gaps
in its confusion matrix. Although it achieves
16086 correct predictions for the no-rain
class (0), it misclassifies up to 4900 cases. Its
performance drops sharply for rainfall classes,
with only 4970 correct predictions for light rain
(1) and 102 for very heavy rain (4).

The GRU model shows inconsistent
classification performance across classes. For
the no-rain class (0), it performs well with
16075 correct predictions, but a wide range of
abnormal values (1276-5748) suggests potential
overfitting or issues in the data normalization
process. Performance declines significantly
for rainfall classes: the moderate rain class (2)
achieves only 1216 correct predictions, heavy
rain (3) drops to 398, and the very heavy rain
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class (4) is almost entirely unrecognized, with
correct predictions ranging from 0—4. This steep
decline in accuracy with increasing rainfall
intensity, along with extremely low values at
the bottom of the matrix, points to limitations in
input data quality or a suboptimal preprocessing
pipeline, especially for extreme rainfall cases.

Overall, all three models struggled to
accurately classify minority classes, with LSTM
producing the most stable results despite being
imperfect, while RNN and GRU exhibited

several anomalies that require further inspection
of data quality and training processes. The large
disparity in the number of predictions across
classes highlights the issue of data imbalance.

Training progress - Loss log

Analysis of the learning curves (Figure 8)
shows a clear difference in the training processes
of the three models: LSTM, RNN, and GRU. All
three display a general downward trend in loss as
the number of epochs increases, but with distinct
characteristics.

Learning Curves (Loss) theo Epoch

LSTM - Learning Curve

RNN - Learning Curve

GRU - Learning Curve

0750

0725

0700

0675

0625

0.600

0575

Figure 8. Training progress and loss log for LSTM, RNN, and GRU.

The LSTM model shows the most
stable learning curve, with test loss decreasing
gradually from 0.75 to 0.575 after 70 epochs,
indicating a slow yet steady learning process.
Notably, the gap between train loss and test loss
is relatively small, suggesting that the model
suffers little from overfitting.

RNN improves more quickly in the early
stages, with test loss dropping from 0.65 to 0.45
in the first 30 epochs. However, it later exhibits
strong fluctuations (especially between epochs
40-50), reflecting the inherent instability of the
traditional RNN architecture.

GRU demonstrates a balance between the
two above learning faster than LSTM but with
more stability than RNN. Its test loss decreases
steadily from 0.65 to 0.30. However, the sudden

drop in test loss at epoch 20 (from 0.60 to 0.35)
followed by subsequent oscillations may
point to optimization issues or an unsuitable
learning rate.

In summary, LSTM shows an advantage
in stability, GRU learns faster but is less stable,
and RNN struggles to maintain consistent
performance across epochs. These results align
with theory: LSTM is designed to address the
vanishing gradient problem faced by traditional
RNNs, while GRU is a simplified version of
LSTM with fewer parameters.

Feature Importance

Analysis of Figure 9 shows the contribution
levels of input features for three deep learning
models: LSTM, RNN, and GRU, highlighting
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Quy Nhon University Journal of Science, 2026, 20(1), 119-133 [131



QUY NHON UNIVERSITY

I SCIENCE

the 15 most important features for each model.
The importance scores were determined using
the permutation importance method, which
measures the decrease in model accuracy when
the values of a particular feature are randomly
shuffled. A greater drop in accuracy indicates
higher importance, reflecting the extent to which
each meteorological variable influences the
model’s predictive performance.

For LSTM, temperature-related factors
at various pressure levels, such as t 750hPa,
t 950hPa, t 300hPa, and the Month variable,
rank at the top, indicating that this model focuses
on temperature variations across both time and
atmospheric height. Additionally, humidity
features like e 700hPa and wind components
such as v_600hPa also play significant roles.

Feature Importance Comparison
Top 15 Features (LSTM)

t 750hPa

DELTA_P_24H
V100
t 600hPa

0.00 0.01 0.02

Importance Score

Top 15 Features (RNN)

v100
t_750hPa
t 900hPa
£ 850hPa
R
DELTA_P_24H
t 800hPa
vion
ul00

e 700hPa
t 950hPa
&
u_600hPa
u_900hPa
v_800hPa

0.00 0.01 0.02 0.03
Importance Score

Top 15 Features (GRU)

0.04 0.05 0.06 0.07

v100
u_600hPa

£ 900hPa

£ 950hPa
DELTA_P_24H

Figure 9. Importance of features.

For RNN, features related to surface and
lower-level wind, such as v100 and v10n, along
with mid and low-level temperatures (t_750hPa,
t 900hPa) dominate. Notably, actual rainfall (R)
and 24-hour pressure variation (DELTA_P_24H)
are among the top features, reflecting the RNN’s
ability to strongly leverage local and direct
weather signals.

Meanwhile, GRU prioritizes v100 and
u_600hPa (zonal wind at 600hPa), combined
with temperatures at multiple levels (t 900hPa,
t 750hPa, t 650hPa) and mid-level humidity

https://doi.org/10.52111/qnjs.2026.20111

0.03 0.04 0.05

Importance Score

(e_700hPa). The 24-hour pressure variation
(DELTA_P_24H) is also among the important
features, highlighting the role of large-scale
dynamic factors.

Overall, all three models utilize a
combination of temperature, wind, and pressure
information, but LSTM emphasizes multi-level
temperature analysis, RNN is more sensitive to
surface wind and rainfall signals, while GRU
balances wind, temperature, and pressure. These
differences reflect the distinct strategies each
architecture employs in rainfall prediction.
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4. CONCLUSION

The study applied three deep neural network
architectures LSTM, RNN, and GRU to classify
rainfall by intensity, using observational data from
the Quy Nhon meteorological station combined
with ERAS reanalysis data. The results indicate
that all three models achieved good forecasting
performance, with LSTM demonstrating
superior accuracy, class discrimination ability,
and training stability. GRU performed closely
to LSTM, offering a balanced choice between
accuracy and computational cost, while the
traditional RNN was less stable and faced
limitations in classifying minority classes.

Feature importance analysis revealed
that the temporal factor (Month) plays a
prominent role, clearly reflecting the seasonal
nature of rainfall in the study area. In addition,
meteorological  features such as  wind,
temperature, humidity, and pressure variations
at multiple atmospheric levels also contributed
significantly, with each model tending to exploit
information differently: LSTM focused on multi-
level temperature variations, RNN was more
sensitive to surface wind and rainfall signals,
and GRU maintained a balance between wind,
temperature, and pressure factors.

However, there exist a number of
practical limitations in this study. Although
ERAS reanalysis data supplement large-scale
information, they exhibit a time lag in updates,
causing the model to rely primarily on surface
observations and limiting its ability to respond
rapidly to short-term atmospheric fluctuations.
Moreover, model performance may decline
over time if not periodically updated, due to
climate change and evolving structures of
meteorological variables. Therefore, regularly
incorporating new data, retraining the model,
and integrating real-time observations with
multi-layer forecasting models and advanced

QOB

deep learning techniques will be crucial for
improving accuracy, adaptability, and resilience
to extreme weather event.
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