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TOM TAT
Bai bao nghién ciru chim quy dao tuén hoan cua ty ding cau T, trén xuyén T? cam sinh boi ma tran
2 1 4 5

A= [ 1] . Ching t6i chirng minh T, thoa man tiéu dé A. Chum quy dao tudn hoan cua T, dugc nghién clru

thong qua khai niém ‘p-gan nhaw’ giita cac diy tudn hoan cia hé dong luc ky tu twong tmg. Chiing t6i ciing dua ra
s6 chiim tudn hoan cac diy tuan hoan c¢é chu ki cho trudc trong truong hop p-gdn nhau.

Tir khéa: Chim quy dao tuan hoan, tu dang cau hyperbolic, dong luc hoc ky tw, xuyén 2 chiéu.
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ABSTRACT

This paper deals with clustering of periodic orbits of the hyperbolic toral automorphism induced by matrix

A= [f ﬂ We prove that T, satisfies the Axiom A. The clustering of periodic orbits of T, is investigated via

the notion of ‘p-closeness’ of periodic sequences of the respective symbolic dynamical system. We also provide the

number of clusters of periodic sequences with given periods in the case of 2-closeness.

Keywords: Clustering of periodic orbits, hyperbolic toral automorphism, symbolic dynamics, 2-torus

1. INTRODUCTION

Symbolic  dynamics is tool to

investigate general dynamical systems. A

a powerful

dynamical system having a Markov partition
will be represented as a symbolic dynamical
system, which is the shift map on a set of bi-
infinite sequences of symbols.

The construction of Markov partition for
Axiom A diffeomorphisms given by R. Bowen!
has many applications. Working on symbolic

dynamics has several advantages since the
theory of symbolic dynamics is almost complete.’
Furthermore, since subshift of finite types are
related to adjacency matrices and digraphs,
we have many choices of tools to work on

symbolic dynamics.

Clustering of periodic orbits is a beautiful

‘Corresponding author:
Email: huynhminhhien@gnu.edu.vn

B. Gutkin and V.A. Osipov?
show that periodic orbits of the baker's map
form clusters and have hierarchical structures,
using symbolic dynamics. The corresponding

phenomenon.

symbolic dynamics of the baker's map is trivial
with no grammar rule, i.e.,, each symbol can be
followed by any other symbols.

In this paper, we consider the automorphism

on the 2-torus T? = R?/Z? induced by
21

11

an Axiom A diffeomorhism* and introduce
5

matrix 4 = . We prove that T, is

symbolic dynamics provided by L. Barreira.
The corresponding symbolic  dynamics is a
subshift of finite type. The adjacency matrix is
a 5 x 5 matrix with entries 0 and 1. This
means that the respective symbolic dynamics
has forbidden sequences. A periodic orbit of
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T, corresponds to a periodic sequence up to a
shift cycle. This paper deals with the clustering of
periodic orbit based on the notion of ‘p-
closeness’ introduced by Gutkin and Osipov.
This is an equivalence relation and groups
periodic sequences into clusters. One cluster can
involve one or many orbits. We give a necessary
and sufficient condition for sequences to be in
the same cluster.

This paper is organized as follows. In the
next section, we present symbolic dynamics of
T4 and prove that 7, satisfies Axiom A. Section 3
studies clusters of periodic orbits of 7, via the
notion of p-closeness and provides the number of
2-clusters.

2. SYMBOLIC DYNAMICS OF T,

Consider T4: T?> — T? induced by matrix

Lo 2
1 1).ie.

Ta(x) = Ax, forall xe TZ

The map T, is a diffeomorhism on T2 and is
called hyperbolic since matrix 4 has two

eigenvalues

)

33—
2 )

the wunit circle. The

A = 3+2\/5 and )\, =

which are not in
corresponding eigenvectors are

Uy = (1+2\/3.1) and Uy = (12\/5,1) .

The unstable manifold (resp. stable manifold) at

x = 2+7Z% € T? is the projection of the line in R?
passing through x and in direction u; (resp. ug)
on T2, Therefore, u; and us are called unstable
direction and stable direction, respectively.

The automorhism 7, is also called Arnold's
cat map (see Figure 1). This map was used by
Arnold and Avez® in 1968 to indicate ergodicity

of the dynamical system. Later, people use
‘CAT’ to short for ‘Continuous Automophirms
on Torus’ The Arnold's cat map is also used to

illustrate chaos property in chaos theory.

Figure 1. The Arnold's cat map

Next we recall some notions which will be used
later. Let f: M — M is a diffeomorphism on a
Riemannian manifold M.

Definition 2.1. A closed set A C M is called
hyperbolic if f(A) = A and for x € A, the tangent
space T, M has the splitting

T.M = E*(z) ® E°(z)
such that

0) dof(E*(x)) = E*(f(@),dof(E"(z)) =
E*(f(@));

(ii) there exist ¢ >0 and A € (0, 1) such that
e f"(w)[| < eA”[[v]], khi ve E*(z),n>0
and
ldsf " ()| < eA™||v|, khiv € E*(z),n > 0;

If A = M then we say f is hyperbolic.

Definition 2.2. A point 2 € M is called non-
wandering if for any neighbourhood U of x, one
has

v U] #o.

n>0
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The set of non-wandering points of fis denoted
by Q(f)-

Definition 2.3. A point z € M is called
periodic if there exists n > 0 such that f*(z) =
x. The set of periodic points of f is denoted by
P(f). Then z is called periodic with period n or
n-periodic.

Proposition 2.1. P(f) C Q(f)-

Proof. Let z € P(f) and let U be a
neighbourhood of x. Then there exists a point
ye UNP(f). Since y is a periodic point,
there exists n > 0 such that f"(y) = y. Then

y€ fMU) implies yelU ﬂ( U f"(U)) or

n>0

UN (U f'"(U)) # (). Hence x € Q(f).

n>0
O

Proposition 2.2. 7 The set of periodic of Ty is
P(T) = Q¥/22.

This implies that the set of periodic points
of T4 is dense in T2

Definition 2.4. The diffeomorphism f is said
to satisfy the Axiom A if Q(f) is a hyperbolic
set and

Theorem 2.1. The diffeomorphism T4 satisfies the
Axiom A.

Proof. According propositions 2.1 and 2.2,

Q(Ta) =P(T4) =T2
It remains to show that T? is a hyperbolic set.
For x € T2, let E¥(x) =< uj > and E*(x) =<

ug >, which are eigenspaces. Then

EYx) @ E*(x) =R?=T,T?

Let Ly:R%— R?, La(z) = Az, z € R% Since Ty is
a linear map, d,Ty = L 4. Then

dTa(E*(x)) = B*(Ta(x))

and ‘
dTa(E*(x)) = E*(Ta(x)).

We obtain that T, satisfies (i).
Next, since again dyT4 = La, dT," =

dyTan = L an for all n € Z. Then , for n € N,
we have

dT%(v) = A" = Ajuv forall ve E*(x)

and
d T " (v) = A7 = A\ "v = Aju
for all v € E*(x). This yields that for n > 0 one

has

[T (v)|| = Ag||v]| for ve E*(x)

and

T3 (W)l = Az o] for v e E¥(x).

This means that (i1) holds. D

Remark 2.1. (a) Since Q(f) = T% T? is a
hyperbolic set of 1’4 and hence T'4 is hyperbolic

by Definition 2.1.

(b) The theorem is still true for any
b

automorhism on T2 induced by | /| €
¢«

SL(2, Z) with eigenvalues not in the unit circle.
Then we call them hyperbolic automorphisms.
<

Since T, satisfies the Axiom A, it admits
a Markov partition'. A Markov partition of
Ta is constructed by Katok and Hasselblatt®
including five rectangles Rgp, Ry, Rz, Rs, Ry

(see Figure 2).
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Figure 2. A Markov partion of 7.

Rectangles R; are the projections of
rectangles in R? with edges in directions wusy
and wup: note that u; and wup are orthogonal.
According to the property of Markov partition,
UL Ri = T? and the rectangles intersect only on
the boundaries. Furthermore, if intT4(R;) N R; # 0
then T,(R;) intersects R;
direction, and if intT, '(R;) N R; # 0 then
T, '(R;) intersects R; along the unstable

along the stable

direction; see Figure 3.

Ta(R;)
RJ' RJ'
Ta(Ri)
) (b)

(a
Figure 3. (a) possible, (b) impossible

The adjacency matrix A = (a.z-:j)j;{j:@ is
defined by

Lifint T4(R;) Nint R; # 0, )
ajj =
* ) 0if int Ty(R;) Nint R; = 0

and explicitly
11010
11010
A=(1 1 0 1 0
00101
00101

The definition of a;; in (1) can be explained as
follows. If an orbit of T, passes through intR;
and then passes through intR; , then a;; = 1,
otherwise a; ; = 0.

Denote

o ={0,1,2,3,4}

and
= {# = (2;)icz: x;€ & forall i€ Z}.

Definition 2.5. The mapo: &% — &%
defined by

(0x)i=zi4 forall i€ Z
is called the shifi map.

The distance in 27% is given by

d(z,y) = Z 27" 20 — yal,

n=—0oQ

= (2,), y = (yo) € &2 Then (%, d) is a
compact metric space and ¢ is a diffeomorphism
on @/~

Define

Aa={(zn) € @ : Gz, =1,Vi € L},

The symbols can follow 0,1,2 are 0,1,3; and the
symbols can follow 3,4 are 2 and 4. Then A 4 is

a closed set of /% and invariant under o, i.e.
o(Aq) = Ay Themap oy 0 Ay — Ay is called
subshift of finite type induced by A.
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Definition 2.6. Sequence = = (z,,),>° __ € &~

is called periodic of period n if

o'(x) ==,
ie.
Titn= Tj Vi € L.
Then we write = [zgz7 . . . ,,—1]. The set of all
periodic sequences of period n in A4 is denoted

by P,.
For n > 1 denote by
X'ﬂ. == {IO R . | : "'CO“ v ;wnfl € b(j'l

Qg mip1 — [ NS {Oa -

—2}}

the set of all subsequences of n symbols in A 4. For
n = 2, we have Xo= {00, 01, 03, 10, 11, 13, 20, 21,
23,32,34,42, 44}.

Next we find the number of P, and X, via
A", One has

A = Pdiag(\1, X2,0,0,0) P!

with
1-v5 145
i
1-v5  144/5
2510
— 1-+/5 1+v5
P Mo L 0 0 -1
1 1 0 1
1 1 0 0 1
Then
fr(A™) = N 4 A1
and
an an by a, by
ap ap by, a, by
A" = ap ap by, a, by ;
by, w O b ey
by, n Cn On Cp
where

In =" M Ty "

5 5+3\f/\n -5+3v5 .,

" 10 10 2
2 —2/5

Cp = B+ \[/\” ? 3 \/;/\g

Proposition 2.3. (a) The number of

subsequences of length . in A_4 s

25 — 11\/5/\,1,1 N 25 + 11\/5)\3,1.

ard(X,) =
card(Xy) 0 ! 10

(b) The number of P, is

card(P,) = card{z € A g: 0" (x) =z} = AT+A}.

Proof. We use Proposition 2.2.12%.
(a) The number of subsequences of length n in
A is the sum of all entries in matrix A" !, namely

9a,—1 + 12b,—1 + 4cp—

25 — 115 254+ 115
= 7\/_)\”'1 ++7\/_

n—1
10 } 10 g

(b) The number of n-periodic sequences in
A 4 is equal to tr(A™), that is A;™ + A, a

For 7 = (2,,)nez € A 4. Using the property of
Markov partition, we can show that

ﬂ TE” R:r: 1

nez

is a single point in T? °. We define

= (T4 "Re,- @)

new

h:Ag— T2 h(z

Then & is a continuous surjection and satisfies

hoa=T4soh. 3)

Then
hoo" =T} oh, forall n > 1. 4

Note that / is not injective, but finite to one.
This does not influence the study of periodic
orbits. The number of n-periodic points of T is
given by the following result.

56 | Quy Nhon University Journal of Science, 2021, 15(1), 51-60



QUY NHON UNIVERSITY

I SCIENCE

Proposition 2.4. 7 The number of n-periodic
points of T is

card{x & T: TH(x) =x} = A} + X — 2.

Remark 2.2, (a) Forz = (x;) € Py, h(z) =
x € T? satisfies 7% (x) = x and

Th(x) € Reyy k=0,...,n—1.

(b) If follows from (4) that if z € A4 is an
n-periodic point of ¢ then h(z) is an n-periodic
point of T4. Therefore,

R BA{[0], [1], [4]} = {x€ T Ty" () =x}\{0+2%)

is a bijection. Hence, instead of studying periodic
points of T4, we consider periodic sequences

of AA. &
3. CLUSTERING OF PERIODIC ORBITS

To define clustering of periodic orbits, we
need some following notions.

For x € T? is an n-periodic point of Tx. The
orbit of Ty through x is defined by

Ox) = {T4(x),i=0,1,...,n—1}.

Definition 3.1. Let x and y be n-periodic

points of T and p € N*. We say that O(x) and
O(y) are p-close if there exists a permutation
a:{0,1....,n—1} ={0,1...,n— 1} such that

AT (), TS (y) < 277 ¥k =0,...,n— 1.

Roughly speaking, for any point in the orbit
of x we can find a point in the orbit of y such
that the distance between them is less than 277,
This means that the two orbits enter the same
parts of T? but with different orders. We say
that these two orbits are in the same p-cluster.

Next we define an equivalence relation ~
in P, as follows. We say x ~ 2 if there is
k €{0,...,n—1} such that o*(z) = 2/, i.e.
x and x'are different up to a shift map. Denote
Pn = Py/ ~.To simplify, we also write z =

[zozy . - . xp—1] € Ppe

Definition 3.2. Let 1 < p < n. Two periodic
SEGUENCes = (g« .« Tp-1], Y= [Ud- - < Pn1] € Ph
are called p-close if any subsequence of p
consecutive symbols ajas . . . ay € X, appears the
same number of times in both z and .
We write 2 ~ y if 2 and y are p-close. It is
. P . .
obvious that ~ is an equivalence relation.

1
Proposition 3.1.% If z 'L y then azfx-y.

. P . .
Since ~ is an equivalence relation on P,, the
set P, is decomposed into disjoint equivalence

C(T))

classes c}f"),... A, Each equivalence class

consists of p<lose sequences and is called a
p-cluster.

Example 3.1. We consider n = 7.

(a) For p = 1, five sequences [0000132],
[0000321], [0001032], [0003201], [0010032]
belong to the same cluster since the number of
times 0,1,2,3,4 appear in these sequences are 4,
1,1, 1, 0, respectively. This cluster is separated into
three 2-clusters; [0000132] and [0000321] are
independent  clusters, and three sequences
[0001032], [0003201], [0010032] belong to one
cluster since 00 appears twice in the three
sequences, 01, 10, 03, 32, 20 all appear once
in the three sequences, while 34, 43, 44, 21, 23 do
not appear. When p = 3, this third cluster is
3-clusters, each cluster
contains only one sequence; see Figure 4 (b).

divided into three

(b) For p = 1, six sequences [0011342],
[0013421], [0101342], [0103421], [0110342],
[0034211] are in the same cluster. For p = 2,
they form six single 2-clusters; see Figure 4 (a).

Remark 3.1. (a) From Proposition 3.1, the
periodic sequences in P, can be represented as
a line chart as in Figure 2°. For p =3, only
two clusters have more than one element, including
the cluster [0001011], [0100011] and cluster

[0010111], [0011101].
&
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T0011342]
[0013421]
[0101342]
[0103421]
[0110342]
[0034211]

[0011342

[0013421]

[0101342]

(a)

Figure 4. Some clusters with n =7

According to Remark 2.2, each n-periodic
sequence in z € A4 corresponds to an n-periodic
point of T4 by the map h defined in (2).
Hence, each element 2 in P,, corresponds to the
n-periodic orbit O(h(x)) of T'4. The next result
allows us to consider clusters of periodic
sequences in P, instead of working on clusters of
periodic orbits of T4,

Proposition 3.2. °If z, y € P, are 2p-close in /"
then two orbits O(h(z)), O(h(y)) of Ta are p-close
in T2

The problem of counting clusters of periodic
orbits is equivalent to the one of counting classes
of closed paths in the de Bruijn graph G,.

Definition 3.3. The de Bruijn graph G, is
defined by:

e cach vertex corresponds to a sequence
Doy » v Bp—2 € Xp_q>

e cach directed edge connecting vertex
ToZ1 . . . Tp—p 1O vertex xjxe . . . Tp—1

corresponds xox1 . .. Tp—1€ X,-

We see that the the set of vertices and the
set of edges of de Bruijn graph G, are X,
and X, respectively. The edges of ), are the
vertices of G 1. For instance, graph G, has

[0103421]| [[0110342]] [[0034211]

[0000132)
[0000321]
[0001032]
[0003201]
[0010032]

Y
[0001032]

[0003201]
[0010032]

[0000132] [0000321] p=2

[0001032]

[0003201]

[0000321] p=3

(b)

vertices 0, 1,2, 3,4 and edges 00, 01, 03, 10, 11,
13, 20, 21, 23, 32, 34, 42, 44; see Figure 5 (a),
while edges of G, are vertices of Gj, which has
34 edges; see Figure 5 (b).

Each closed path in G, visiting n edges is
represented by a sequence © = xgry . . . Tp_1 in
X,. This finite sequence induces periodic orbit
(2021 . . . Tp_1] € Py In this way, the ith edge of
G corresponds to the code it ... zj4p—1 0f 2.
Denote by g, the corresponding closed path in G,

represented by x.

Next we calculate the number of 2-cluster, i.e.
the number of equivalence classes of 2in P

Theorem 3.1. The number of 2-clusters in P,, is the
number of vectors N = (1ng)q¢ x, satisfying

Y ne=n (3)

aEXs

and ;
SQN — R%"N, (b)

where Ss and Ns are given by

11 1 0 0 0O O0CO0OO0OCO0OO0OO0
000111 00 O0O0O0OO0OO
RT = o600 0O0O0OT1TT1O0O0OTO0OTO0TO
o000 o0 0O0O0OO0OT1T 1T 1 00
o600 0O0O0OO0ODTO0ODTO0OO0ODTO0OT1I 1
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Figure 5. Edges of G (a) are vertices of Gs (b)

and
1 00 1 00 O0OO0O1 00 00
001 0010000100 0
So=]l00 10010000100
0000 00O0T10O0O0O0 1 0
0000000100001

Proof. Forp>2. Denote by N = (n4).cx, the
vector in which n, is the number of times the
closed path g, according to = € P, passes
through the edge @ € X,. Then, two sequences z,
y € X, are p-close (i.e. x X y) if and only if two
respective paths g,, g, in G, visit each edge of
G, the same number of times, i.e. N(z) = N(y).
Therefore, each equivalence class of p-close
sequences 1s uniquely determined by vector N =
(na)acx,. Each equivalence class in Pn/?‘i is
identified with a vector N = (n,)ucx, » where n,
is the number of times the corresponding path
visits the edge a of graph (. For p = 2, since
vector N corresponds to a periodic orbit of
period n, its coordinates must satisfy:

(i) the length of closed path is equal to n, so
(5) holds;

(ii) the number of times a periodic orbit
visits a vertex of Gy is equal to the number of
times this orbit exits that vertex. This is
illustrated by equation (6). The theorem is
proved. O

(b)

Example 3.2. The number of 2-clusters

in P; is represented by vector N =
(R0, Ro1, Ro3, Rpg, Rpp, M3, 20, N21, 23, Ry, Rgg)

satisfying the following system

nog + ngy t gz + gt npp a3t

T n3g gty t Rt gyt oy =17
Rop + o3 — nyg— nag =0
—ngyt Rt Rz R =0
Mgzt g3t R2z— N3 N34 =0
Mg Hypt 23— 32— Ry =0
N34 = N42 =1

N

By solving this system to find non-negative
integer solutions, one has 94
corresponding to 94 2-clusters. There are 76
clusters including single element, 14 clusters
including
including three elements. The 2-clusters with
three elements are

solutions,

two elements and four clusters

{[0001011],[0010011],[0001101]},

{[0010111],[0011011], [0011101]?,
{[0001032],[0003201], [0010032]},

{[0111321],[0113211], [0132111]}.
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4. CONCLUSION AND OUTLOOK

The paper studies clustering of periodic
orbits of the automorphism 7, via symbolic
dynamics. We only consider the case p = 2,
although the de Brujin graph is defined for
P = 2. Furthermore, Theorem 3.1 gives us the
information of the number of clusters. The
number of elements in the same cluster has not
been given. The matrices S, and R, for general
p as well as algorithms to list all p-clusters will
be investigated in the near future.
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