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TOM TAT

Viée xdy dung cac dic tinh va cdu tric phan tir dong mt vai trd quan trong trong nhiéu linh vuc khéc nhau,
nhu khoa hoc vat liéu, cam bién, cong nghé nano, thiét ké va kham pha thude. Tuy nhién, viéc xdy dung cAu tric
phan tir trén mot tap dir lidu tho, tap dir liéu bi nhidu va thiéu théng tin, 1a mot nhiém vu day thach thirc nhung rat
quan trong. Thudt toan phan loai K-Nearest Neighbors (KNN) 1a m¢t thuat toan lazy learning, c6 xu hudng tim
kiém céc diém gén nhit cho mét muc tiéu trong toan bd tép huén luyén. Tuy nhién, qua trinh du doan ciia KNN
kha mat thoi gian. Trong khi thuat toan cay tim kiém K-Dimension (K-D tree) la mot cay nhi phan da chiéu, c6 ciu
trac luu trit cu thé dé biéu dién dir liéu huan luyén mot cach hiéu qua vé mat thoi gian. Tir cac khia canh trén, trong
bai béo nay, ching ti da thir nghiém va dé xuit mot phuong phap goi 14 thudt toan cy tim kiém KNN-KD dé xir
ly tap dit liéu tho vé cdu triic phan tir bang cach két hop cac wu diém cia KNN va cay K-D.

Tw khoéa: Xdy dung cdu triic phan tur, hoc may, cdy tim kiém K-Dimension, K-Nearest neighbors.
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ABSTRACT

The construction of molecular properties plays a significant role in various fields, such as material science,

sensors, nanotechnology, drug design, and more. However, the construction of molecular structures on a raw
dataset, which is noisy and incomplete, is a challenging but crucial task. K-Nearest neighbor Classification (KNN)

is a lazy learning classification algorithm with tendency to search the nearest neighbors for a target in the entire

training set. Nevertheless, each step of KNN is quite time-consuming. In comparison, the K-Dimension tree (K-D

tree) algorithm is a multi-dimensional binary tree, a specific storage structure for time-efficiently representing
training data. To that respect, in this journal article, we conduct and propose a method called the KNN-KD tree

algorithm to process a raw labeled dataset of the molecular properties by combining the advantages of the KNN

and K-D tree.

Keywords: Construction of molecular structures, machine learning, K-Dimension tree, K-Nearest neighbors.

1. INTRODUCTION

The construction of molecular structures is one of
the widespread issues where various approaches
are applied using traditional chemistry formulae
or mathematic computations. However, the
datasets collected in experiments are noisy
and incomplete for reconstructing molecular
structures. In this article, a raw chemical dataset
of Chemistry and Mathematics in Phase Space
(CHAMPS)' is used to prove the performance
of the geometric-based approximated machine
learning model, namely the K-Dimension tree
(K-D tree) in the construction of molecular
structures. Significantly, this journal article will
analyze, construct and visualize the molecular
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structures while we only use the XYZ coordinates
of atoms for training the model. Consequently,
this method can reduce the computing time
with comparably high accuracy to rule-based
methods.

1.1. Construction of molecular structures

The construction of molecular structures is
a typical issue in chemistry since it impacts
biomedical engineering, drug discovery, and
vaccine exploration. In the real scenario, much
information on the molecular properties is noisy,
incomplete, and deficient.> As a demand, we
need methods that improve the exploration of the
molecular structures to deal with the shortage of
information.
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Various approaches to constructing the
molecular structures are applied with machine
learning.>* However, the complexity of
constructing the molecular structures increase
significantly once the bonding schema is
involved.? One of the state-of-the-art methods
which achieve high accuracy on the CHAMPS
dataset is a hybrid approach, namely soft graph
transformer by Bosch Corporate Research and
Bosch Center for AL’ This model processes
the entire molecule one by one, simultaneously
predicting each of the scalar couplings in the
molecule. Instead of using a traditional graph
model, their approach processes the data as a
meta-graph where each atom, chemical and non-
chemical bonds, namely just pairs of atoms, are
included in the model, and even triplets or quads
all become nodes for the graph transformer.
Distance measurement between all the nodes in
the graph is necessarily defined to support the
model. For example, atom-to-atom distances use
the actual distance between atoms. In contrast,
atom-to-bond distances use the minimum
distance from the atom to the two atoms in the
bond, with similar extensions for triplets quads.
Some other methods apply the Bidirectional
Encoder Representations from Transformers
(BERT) training to extract only raw coordinates
instead of distance, translational and rotational
invariances, such as MTM®, Mol-BERT’, BERT
of Xin-Yu et al.?®

Most other studies on molecular structures
based on the CHAMP dataset have focused on
predicting the scalar coupling constant without
having a proper way to process and classify
the bond information. Hence, the success rate
of bond reconstruction is not good enough
for further steps. Moreover, the running time
of extracting information from coordinate
files is time-consuming due to the enormous-
size dataset. Also, some approaches applying
multiprocessing may yield incorrect data. For
the above reasons, a high percentage of molecule
structures are not constructed correctly, which
leads to the fact that various models cannot

improve the accuracy in predicting the scalar
coupling constants. Consequently, there is a
need to create an easily customed algorithm to
improve the success rate of the construction of
molecular structures.

1.2. K-Nearest neighbors algorithm

K-Nearest Neighbors (KNN) algorithm is
based on the distance metric function, namely
Euclidean distance, to calculate the distance
between the sample to be classified x and each
sample in the training set, sort the calculated
distance, and select the k training samples
closest to the sample to be classified as the &
nearest neighbors of x. If the sample belonging
to a particular class of the k nearest neighbors
is the majority, the representative classification
sample x is classified into the category.’

1.3. K-D tree algorithm

K-Dimension tree (K-D tree) is a binary
tree structure that recursively partitions the
parameter space along the data axes, splitting it
into nested orthotropic regions into which data
points are filed.!® K-D tree is a particular case
of binary space partition trees. In detail, it is a
space partitioning data structure for organizing
points in a K-Dimensional space. A non-leaf
node in the K-D tree divides the space into two
parts, called half-spaces. Each subspace can be
recursively divided in the same way. The left
subtree of that node represents points to the left
of this space, and the right subtree represents
points to the right of the space. Constructing a
K-D tree on a K-Dimension dataset represents a
partition of the K-Dimensional space formed by
the K-Dimensional dataset.

K-D trees are helpful in range searches
and nearest neighbor searches. They are the
most powerful data structures for small and
moderate numbers of dimensions up to 20
dimensions.!! In general, structures of the K-D
tree attempt to reduce the required number of
distance calculations by efficiently encoding
aggregate distance information for the sample.
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The construction of a K-D tree is speedy since
partitioning is conducted only along the data
axes. Once built, the nearest neighbor of a query
point can be determined with only distance
computation. Nevertheless, the K-D tree method
is high-speed for low-dimensional neighbor
searches. It becomes ineffective as it grows
tremendous. The primary reason is that the ratio
of the volume of a unit sphere in K-dimensions
falls exponentially compared to a unit cube in
K-dimensions. Thus at an exponential rate, many
cells have to be searched within a particular
radius of a query point, say for a nearest-neighbor
search. Additionally, the number of neighbors
for any cell grows up and eventually becomes
insurmountable."

1.4. Improved neighbor search algorithm
using a K-D tree to find multiple k nearest
neighbors (KNN-KD tree)

However, the nearest neighbor searching
algorithm applied with the original K-D tree can
only find one nearest neighbor. Consequently, it
is necessary to adapt the original algorithm to be
more efficient for searching the molecular data
called KNN applied with the K-D tree (KNN-
KD tree).”!* It can discover multiple K-nearest
neighbors of a given query point instead of just
finding one nearest neighbor. A bounded priority
queue that stores the list of K-nearest neighbors
together with their distances to the query point
is applied in the adapted algorithm. The higher
the priority value of the point is, the longer
the distance from that point to the query point
becomes. A fixed upper bound of the bounded
priority queue must be defined, which is the
number of nearest neighbors. The bound is used
to prune tree searches, so if a series of K-nearest
neighbor queries are required, it may help supply
the distance to the nearest neighbor of the most
recent point. Whenever a new point is added to
the queue, if the queue is at capacity, the point
with the longest distance to the query point is
ejected from the queue.'

https://doi.org/10.52111/qnjs.2022.16305
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Figure 1. Bounded priority queue for KNN

For example, Figure 1a shows the nearest
neighbor priority queue with the upper-bounded
size of five and holds five points, from A to E.
Suppose that the next nearest neighbor point to
be inserted into the priority queue is the point F
with the priority of 0.4. Because the maximum
size of the priority queue is five, point F is
inserted into the priority queue. However, point
E with the longest distance to the query point q is
eliminated. Figure 1b shows the resulting priority
queue after point F is inserted. On the other
hand, suppose that the next nearest neighbor to
be inserted into the priority queue is point G with
a distance of 3.5. Because the distance value of
G is greater than the maximum priority element
in the queue, G is not inserted into the queue.

In conclusion, there are two improvements
in the KNN-KD tree algorithm from the
traditional K-D tree to improve search
efficiency. The first improvement is that when
determining whether to look on the opposite side
of the splitting hyperplane, the algorithm applies
the distance from the point with the longest
distance in the nearest neighbor priority queue
as the radius of the candidate hypersphere.'® The
second improvement is that it reduces the time
complexity from O(n) to O(n""*+m)."

2. DATASET AND RESEARCH METHOD
2.1. Dataset

Because the training and test splits are by
molecule, no molecule in the training data will
be found in the test data. The dataset contains
these files as follows.

o train.csv The training dataset contained
4,658,147 scalar coupling observations of 85,003
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unique molecules. The first column (molecule
name) is the molecule's name where the coupling
constant originates. The second (atom_index_0)
and the third column (atom_index 1) are the
atom indices of the atom pair, creating the
coupling. The fourth column (scalar _coupling
constant) is the scalar coupling constant needed
for predicting. All of the molecules contained
five types of atoms: carbon (C), hydrogen (H),
nitrogen (N), fluorine (F), and oxygen (O). There
were eight distinct types of scalar coupling,
including 1JHC, 1JHN, 2JHH, 2JHC, 2JHN,
3JHH, 3JHC, and 3JHH, which means that the
fluorine coupling is not presented in the dataset.

o test.csv The test set has the same
information as the train set but without the target
variable, namely the scalar coupling constant.
Because scalar coupling constant contains
information about relative bond distances and
angles, which are informative in determining the
connectivity between atoms in a molecule, scalar
coupling constant is not available in the test
dataset to evaluate whether the model is robust
to it."® The test dataset contained 2,505,542
scalar coupling observations of 45,772 unique
molecules.

e structures.csv contains the molecular
structure XYZ information, where the first
column (molecule_name) is the molecule's name,
followed by the index of the atom (atom_index).
The following column (atom) contains the atomic
element symbols such as H for hydrogen, C for
carbon, N for Nitrogen. The remaining columns
include the X, Y, and Z cartesian coordinates.

o dipole_moments.csv contains the
molecular electric dipole moments. These are
three-dimensional vectors that indicate the
charge distribution in the molecule. The first
column (molecule _name) are molecule’s names;
the second to the fourth column is the XYZ
components of the dipole moment.

emagnetic_shielding_tensors.csvcontains
the magnetic shielding tensors for atoms in the
molecules. The first column (molecule_name) is

the molecule name, the second column (atom
index) is the index of the atom in a molecule, the
third to eleventh columns comprise the XX, YX,
7ZX, XY, YY, ZY, XZ, YZ, and ZZ clements of
the tensor/matrix respectively.

o scalar_coupling_contributions.csv The
scalar coupling constants in the train set (or
corresponding files) are a sum of four terms.
scalar_coupling contributions.csv contains all
these terms. The first column (molecule name)
is the name of the molecule. The second (atom_
index_0) and third column (atom_index I) are
the atom indices of the atom pair. The fourth
column shows the type of coupling. The fifth
column (fc) is the Fermi Contact contribution.
The sixth column (sd) is the Spin-dipolar
contribution. The seventh column (pso) is the
Paramagnetic spin-orbit contribution. Finally,
the eighth column (dso) is the Diamagnetic spin-
orbit contribution.

2.2. Proposed method

This journal article proposes to apply the
K-Nearest Neighbour with the K-D tree (KNN-
KD tree) algorithm to solve the construction of
molecular structures, where the knowledge of
geometry and pattern matching is utilized.

Our KNN-KD tree algorithm is split into
four main steps to reconstruct the molecular
structures based on the bonding schema. Every
molecule is selected and restored by four steps
where the XYZ cartesian coordinate of atoms
structure is applied in the K-D tree. Our method
solves the three kinds of coupling types.

In general, the bond length between the
two atoms is approximately the sum of the
covalent radii of the two atoms. Consequently,
in the bonding reconstruction algorithm, the
valence radii of the chemical elements are pre-
defined and applied. The covalent radius is the
distance from the center of the nucleus to the
outermost shell of the electron, and its value may
be derived from experimental measurements or
calculated by theoretical models.® However,

https://doi.org/10.52111/qnjs.2022.16305
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these relationships are certainly not accurate
due to the inconstant size of an atom but depend
on its chemical environment." For example, in
the heteroatomic A-B bonds, ionic terms may
enter.?” Furthermore, the differential value of
single, double, and triple bonds are too small to
distinguish based on the distance values derived
from the XYZ cartesian coordinate of atoms in
the dataset. Consequently, in our algorithm, only
the single bond covalent radius is manipulated to
create the general bonding schema.

2.2.1. Single bond connect reconstruction

To successfully reconstruct the total bonding
system, firstly, the overall molecular bonding
structure must be created. The background of
single bond connect reconstruction is based
on the bond length comparison. In detail, each
time, a pair of XYZ cartesian coordinates of two
atoms in a specific molecule is put into the K-D
tree structure in the three-dimensional geometry.
To be more easily understandable, a random
molecule, dsgdb9nsd 000007, is analyzed.

Table 1. The XYZ cartesian coordinate of the
molecule dsgdb9nsd_000007

index | atom X y z
0 C -0.0187 1.5256 | 0.0104
1 C 0.0021 -0.0039 | 0.0019
2 H 0.9949 1.9397 0.0029
3 H -0.5421 1.9236 | -0.8651
4 H -0.5252 1.9142 0.9000
5 H 0.5255 -0.4019 | 0.8775
6 H -1.0115 -0.418 0.0095
7 H 0.5086 -0.3924 | -0.8876

Table 1 shows that the molecule
dsgdb9nsd 000007 has eight atoms inside, which
is two carbon atom and six hydrogen atoms. With
the XYZ cartesian coordinate, it is easy to outline
the position of every atom inside the molecule in
the three-dimensional geometry, as illustrated in

https://doi.org/10.52111/qnjs.2022.16305

Figure 2. Still, there is no connection between
these atoms in the dataset, namely the bonding
schema. The approach is to search for all possible
connections to create single chemical bondings
from an atom to others. Since the valence of
each atom is not provided, the standard valence
is used as the default value. Also, any atom
with zero available bonding is rejected. With
the molecule dsgdb9nsd 000007, the algorithm
starts with the first atom of hydrogen because the
processing order beginning with the hydrogen
avoids a butadiene-like molecule.

Based on the K-D tree query, the nearest
atom is chosen by distance. At first, the K-D
tree finds the nearest atom to a selected atom.
For the spatiotemporal interpolation for the
dsgdb9nsd 000007 data, a three-dimensional
K-D tree has been constructed to find the
K-nearest neighbors. Figure 3 illustrates the
K-D tree built from eight atomic points of
dsgdb9nsd 000007 data alongside its index.
Atom C at ;=] is the root point because it is the
median point on the x-axis and splits the atomic
points dataset into two groups. The first left
branch group with points whose x-axis values are
less than or equal to the atomic root point Xepnr
While the other right branch group with points
- The split
at the atomic root point is visualized in Figure 4.
The red line is the splitting line according to the

whose x-axis value is greater than x

X-axis.
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Figure 2. Eightatoms of the molecule dsgdb9nsd 000007
in the XYZ cartesian coordinate system.
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Figure 3. Visualization of the K-D tree structure
constructed from 8 atomic points. Each square
contains the XYZ cartesian coordinate with its
atomfindex].

Then, to continue building the K-D tree
for the molecule dsgdb9nsd 000007, recursively
build the K-D tree in the right and the left half-
space in Figure 4 by splitting at the atomic
point hydrogen (i=7) of the right half-space
and hydrogen (i=4) of the left half-space. The
reason is that both mentioned atomic points are
the median point according to the y-axis, and
splitting remained atomic data point horizontally
through it. Continuing partition recursively to
completion will result in the entirely constructed
K-D tree, as illustrated in Figure 5. The blue line
is the splitting line according to the y-axis, while
the green line is the splitting line according to
the z-axis.

From the entirely constructed K-D tree,
the K-D tree query has been implemented to
get the array list of ordered atoms index relying
on the distance from the selected atom point.
Since the ordered atoms list of the molecule
dsgdb9nsd 000007 is: [‘H’, ‘H’, ‘H’, ‘H', ‘H’,
‘H’, ‘C’, ‘C’], we start with the atom H at ;=2.
For each atom, the K-D tree query returns the
nearest neighbor according to the distance. Based
on the entirely constructed K-D tree structure in
Figure 5, the atom C at i=/ (C[1]) as the root
is taken as an example. Atom C[1] becomes the
query point in the K-D tree structure. The C[1]
query point continually traverses all nodes inside
its branch then creates its sphere where the radius

is the distance from C[1] to the current nearest
node. Next, we check whether the sphere crosses
any coordinate axis, backtrack to the intersected
branch, and measure the distance to find the more
current nearest node. We repeatedly measure,
create the new sphere, and check the intersected
area until the nearest node is found. In this case
of C[1], the atom hydrogen with i=6 (H[6])
becomes the nearest neighbor, which is shown
in Figure 6. The distance from C[1] to H[6] is
1.09495347.
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Figure 4. Visualization of splitting the atomic points
into two groups according to the x-axis at atom C

(i=1).

After finding out H[6] as the nearest node
of C[1], if there is no bond yet between those
two atoms and the connection between them
certainly exists once, the algorithm continues to
compare the calculated distance between them to
the predicted bonding distance. In addition, the
number of nearest nodes taken into consideration
is based on the valence of the element. If the
valence value is larger than the number of atoms
in a specific molecule, the maximum number
of atoms is used. For example, the valence of C
is 4, and then the four nearest nodes are taken to
measure the distance.
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Figure 5. An entirely constructed K-D tree applies to
the molecule dsgdb9nsd_000007

dsgdb9nsd_000007

@B

! 4
£

s

~

1]

s

mm

°

r R R T T

—t— T
s
N

on

=
s

Figure 6. The nearest neighbor of atom C (i=1) is the
atom H (i=6) with the dist=1.09495347.

The predicted bonding distance between
them is measured as the sum of the bond length
of each atom. In this case, only atoms with the
measured distance in the 20% expected distance
or closer are kept. Then, we check whether
both atoms have remaining valence or not and
continue decreasing the remaining valence and
creating a new bond. If any of them has zero
remaining valences, we mark both atoms as
leaves. The function continues running until
all nodes are marked as leaves. In the end, the
molecule dsgdb9nsd 000007 is constructed
as in Figure 7. Based on the fully bonding

https://doi.org/10.52111/qnjs.2022.16305

reconstructed structure of dsgdb9nsd 000007, it
is relatively easy to figure out that the chemical
formula is Ethane (C,H,), all connected by single
bonds.

dsgdb9nsd_000007
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Figure7. Fully bonding reconstructed dsgdb9nsd_000007
molecule

2.2.2. n-bond connect greedy reconstruction

After successfully reconstructing the single
bonding, the next step is rebuilding n-bond
connections. Even though there is a calculated
table of bond length for the double bond and
triple bond, the accuracy and the consistency of
the bonding connection are low. For example, the
C atom has various variations in CC bond lengths
that can be reasonably explained on the basis of
hybridization being the primary factor. When
atoms with lone pairs are involved, it appears
necessary to introduce electron delocalization
effects.”! As a consequence, the bond length and
bond angles do not provide a reliable measure of
carbon hybridization. Any atom whose valence
is greater than 1 can potentially share two or
three pairs of electrons with another atom. The
n-bond connect reconstruction is applied for
any molecule having any remaining available
valence, which is not yet connected to other
atoms. The molecule dsgdb9nsd 000005 is
a typical example for this case because after
applying the single bond connect reconstruction,
its total remaining available valence is 4. The
structure data of molecule dsgdb9nsd 000005
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are listed in Table 2. Both atom C and atom
N have two remaining unconnected bonds.
Especially, atom C is marked as a leaf due to its
connection to atom H, which has zero valence.

The idea of solving the n-bond connection
is to link the atoms by electron pair bonds
until each atom has a full octet based on the
Lewis structure for compounds. While there
are remaining atoms marked as leaves with
available valence, the algorithm will add as
many bonds as possible between atoms having
any available valence. Every atom is taken into
consideration one by one. Until any of them has
remaining valences, the algorithm will mark
both atoms as leaves. The greedy algorithm is
also applied to make a locally optimal choice at
each stage. If any atoms still have a remaining
available valence, the algorithm will check each
key according to these bonding keys. Then,
the bond will be added to as many as possible
between a pair of atoms that have an available
valence. With the greedy algorithm, it is possible
to entirely reconstruct the double bond and triple
bond of molecules.

Table 2. The XYZ cartesian coordinate of the
molecule dsgdb9nsd 000005

index | atom X y z
0 C -0.0133 1.1324 0.0082
1 N 0.0023 -0.0191 0.0019
2 H -0.0278 2.1989 0.0141

To better understand how the implemented
algorithm works, there is a visualization
of the bonding schema of the molecule
dsgdb9nsd_000005. As can be seen from Figure 8,
the bonding between atom C at i=0 (C[0]) and
atom H at ;=2 (H[2]) is colored black, which
means the single bond. Since the H[2] is marked
as a leaf, so does the C[0]. Next, the algorithm
solves for the bonding between C[0] and atom
nitrogen at i=/ (N[1]). After running the n-bond
connect greedy reconstruction, the triple bond
between C[0] and N[1] is constructed as the red
line. All atoms in the molecule have no available

valence left. Hence, the double bond and triple
bond reconstruction algorithm is assumptively
successful.
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Figure 8. Fully bonding reconstructed dsgdb9nsd_000005
molecule. The black line presents a single bond, and the
red line presents the triple bond

2.2.3. Ionized radical search

After successful n-bond reconstruction, there
are still many molecules without the completed
bonding structure due to the ionization. The
possible ionized groups which can be formed
from H, C, N, F, and O in the dataset are
Carboxyle (COO) and Ammoniumyl (NH,").
The idea of searching ionic bonds is initially to
look for covalent bonds with remaining valence
on some atoms where these covalent bonds are
processed n-bond connection. For example,
to find the ionic group NH.", it is necessary to
search for the disconnected NH,. However, for
the ionic group COO-, we need to find the CO
group with one available bond connected to an
O atom.

Tobetterunderstand theradicalionic search
algorithm, the molecule dsgdb9nsd 000271 is
taken into consideration because it has both ionic
group COO" and NH," in its structure. After pre-
processing, the molecule dsgdb9nsd 000271 is
identified as Alanine with the chemical formula
C,H,NO,. After processing with the ionic radial
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search algorithm, the structural result of the
molecule dsgdb9nsd 000271 is visualized in
Figure 9.

dsgdbOnsd_000271 C3H;0:N
X

20 -15 -10 048 DID 05 10

Figure 9. Fully bonding reconstructed dsgdb9nsd_000271
(C,H.NO,) molecule. The black line presents the
single bond, the green line presents the double bond,
and the red line presents the triple bond

2.2.4. Ring search

Besides reconstructing the bonding schema,
the ring of atoms inside a particular molecule
should be considered. The reason for identifying
the chemical ring is to easily distinguish the
correct chemical formula of a specific molecule.
For instance, the molecule dsgdb9nsd 000017
is one of the remarkable molecules containing
a ring inside itself. The reason this molecule is
more specific than the other is that the chemical
formula formed from its atoms can be three
different compounds.

Table 3. The XYZ cartesian coordinate of the
molecule dsgdb9nsd_000017

index | atom X y z
0 C 0.0153 1.4176 0.009
1 C 1.2648 0.6492 | -0.0066
2 (¢ -0.0002 | -0.0077 0.002
3 H -0.3176 1.8859 0.9348
4 H -0.3353 1.8958 | -0.9039
5 H 1.8324 0.5626 | -0.9319
6 H 1.8501 0.5527 0.9068

https://doi.org/10.52111/qnjs.2022.16305

The approach of the algorithm to identify
the ring of a particular molecule and its order is
to apply the network graph to search for a cycle
graph. The minimum cycle basic algorithm
supports this approach since searching for the
chemical ring is equivalent to finding the minimal
cycle basic in a graph where the graph is the
bonding structure. It is a cycle basic for which
the total weight, in other words, the length for an
unweighted graph, of all the cycles is minimum.
The graph is split into connected subgraphs. The
idea behind the minimum cycle basic algorithm
is to use an all-pairs shortest paths (APSP)
algorithm as a subroutine. Then, Dijkstra’s
algorithm is used for APSP computation. In other
words, the graph of the bonding structure will be
analyzed to find the shortest ring in a molecule.

dsgdbOnsd_000017 C,H40
X

Figure 10. Fully bondingreconstructed dsgdb9nsd_000017
molecule (C,H,0). The ring is between C, O, and C

3. RESULTS AND DISCUSSION
3.1. Results

After we apply the KNN-KD tree algorithm in
the construction of molecular structures, we get
45772 unique molecules built from the test set
and 85003 unique molecules built from the train
set. After constructing the bonding type, there
are 17 bonding types.
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The number of built molecules is equal to
the initial number of molecules in the dataset,
which means it is likely that there is no failure
in the reconstruction algorithm. However, there
is a high possibility that some molecules are
not correctly handled according to the order of
atoms or the bonding types. That is why there
should be a proper evaluation to determine
the success rate of the bonds reconstruction
algorithm.

To evaluate the success rate of our KNN-
KD tree algorithm, we propose to compare
the output results to the result computed by
OpenBabel, which is a chemical toolbox
designed to search, analyze, convert, or store
data from molecule modeling, chemistry, solid-
state materials, biochemistry, or related areas.”
Besides that, we conduct another baseline to test
the accuracy of the KNN-KD tree algorithm.
The second evaluation is to calculate the bond
type consistency based on the distribution of
bond length.

3.1.1. Evaluate by pairwise comparison versus
OpenBabel

The pairwise comparison is applied to evaluate
the calculated bonding type related to the
bonding distance between two atoms and
whether they are significantly different from one
another. A pairwise-comparison trial included a
pair of scalar coupling with its bonding type and
the bonding distance between atoms. We derive
results from the OpenBabel toolbox with the
CHAMPS dataset and compare them with results
computed by our KNN-KD tree algorithm. Any
pair having a different bond type or a significant
difference in the distance value between two
atoms is set as an error, which is considered to
be larger than 0.01.

Table 4 shows that there are 31927 scalar
coupling observations of 2064 unique molecules
marked as the error, which accounts for 2.4%
of total processed molecules in the train set. At
the same time, there are 17692 scalar coupling
observations of 1150 unique molecules flagged
as the error, which occupies around 2.5% of total
processed molecules in the test set.

Table 4. The comparison table between our method
and OpenBabel

Dataset Test set | Train set
Unique molecule 45772 85003
Inconsistent unique 1150 2064
molecule
Unconsistency percentage 2.5% 2.4%

3.1.2. Evaluate by bond type consistency
distribution

Each bonding pair is grouped by its different
bonding valence for both the train and test
datasets. So, it is more understandable to
analyze the distribution of bonding types over
the distance between atoms. The computation of
bond type consistency based on the bond length
is applied. Each bonding pair is grouped by its
different bonding valence for both the train and
test datasets. So, it is more understandable to
analyze the distribution of bonding types over
the distance between atoms.

As can be seen from Figure 14, the
train and test set match well for the relative
distribution of bond length. The train and test
should be the same for the prediction of the
scalar coupling constant. The number of bonds
also builds the distributions, which peak at a
different bond distance. This is consistent with
the expected behavior that the more bonds, the
further distance between two atoms.
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Table 5. The successful rate of bond reconstruction

The distribution of the 1.0 CC, 2.0 CC,

according to coupling types

and 3.0 CC is a perfect example of very well

Dataset Coupling | Running | Successful separated distributions. Adding the COO-
atase . .. . .
type time rate handling improved a lot of things by separating
1JH 111 100.00Y . . .. . .
JHC > 00.00% the previous 1.0 CO bimodal distribution into
1JHN 141s 100.00%
2THC 241s 99.98% two well-defined peaks, one for 1.5 CO and
. 2JHH 336s 100.00% the second for 1.0 CO. Consequently, some
Train set 5 ) o ) )
2JHN 379s 99.88% other bimodal distributions like 1.0 CN, which
3JHC 491s 99.97% .
decreased in 6.5% of bonds, can be expected to
3JHH 600s 99.96% 5 P
3JHN 655s 99.94%, be resolved the same way if needed. Based on
1JHC 702s 100.00% the calculated distribution, the running time of
0, . . .
1JHN 717s 100.00% the implemented algorithm, together with the
2JHC 768s 99.99% ¢ be derived in Table 5
ot set >THH 817s 100.00% success rate, can be derived in Table 5.
2JHN 839s 99.90%
3JHC 896s 99.98%
3JHH 951s 99.96%
3JHN 980s 99.96%
CC in 30.1% of train, 30.0% of test CF in 0.1% of train, 0.1% of test CH in 44.7% of train, 44 6% of test
1.0CC train 27.32% 1.0CF train 0.12% 101 - 1.0CH train 44.06%
2 1.0CC test 27.21% 1.0CF test 0.12% 1.0CH test 43.92%
10 2.0CC train 1.56%
2.0CC test 1.56%
3.0CC train 0.78% 10' __________
3.0CCtest 0.77% s
" 10
10
10° 10° 10°
12 13 14 15 16 17 18 1.30 132 134 1.36 1.06 1.08 1.10 112 114
L2dist [A] L2dist [A] L2dist [A]
CN in 9.1% of train, 9.2% of test CO in 10.4% of train, 10.4% of test HN in 2.7% of train, 2.8% of test
1.0CN train 6.49% 1.0CO train 8.02% 1.0HN train 2.60%
1.0CN test 6.58% 1.0CO test 8.01% 1.0HN test 2.69%
10: 2.0CN train 1.48% 1.5CO train 0.00%
2.0CN test 1.52% 1.5CO test 0.01%
3.0CN train 0.71% \ 2.0CO train 2.16%
3.0CN test 0.68% 10 2.0CO test 2.18% 10'
10’
10° 10° 10°
12 14 16 18 13 14 15 16 1.000 1025 1050 1075 1100 1125
L2dist [A] L2dist [A] L2dist [A]
HO in 2.1% of train, 2.1% of test NN in 0.4% of train, 0.4% of test NO in 0.3% of train, 0.3% of test
1.0HO train 2.06% 10° 1.0NO train 0.26%
102 1.0HO test 2.05% 1.0NO test 0.26%
, 2.0NO train 0.00%
10 2.0NO test 0.00%
. 10'
10
1.0NN train 0.28%
1.0NN test 0.28%
2.0NN train 0.09% |
| 2.0NN test 0.09% i
100 1 100 I MmEnEEEN e 100
0.96 098 1.00 1.02 1.04 115 120 125 130 135 140 145 1.2 13 14 1.5 16 1.7 1.8
L2dist [A] L2dist [A] L2dist [A]

Figure 11. The diagram of bond length by atom pair and number of bonds. The line illustrates the distribution of

each bond type in the train/test set
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3.2. Discussion

Our results can be improved by applying other
systems. The initial algorithm calculates the
distance between atoms based on the XYZ
cartesian system. However, according to some
research, this representation is not stable. Each
coupling pair is located at a different point in
space, and two similar coupling sets would
have significantly different XYZ positions. So,
instead of using coordinates, another system is
considered. In this system, initially, each pair
of atoms is taken as two first core atoms. The
distance of the center between each pair needs
to be calculated. Then, all n-nearest atoms to
the center, which exclude the first two atoms,
are required. Any two closest atoms become
the third and the fourth core atoms. Finally, the
distances from four core atoms to the rest of the
atoms and to the core atoms are calculated as
well. By using this representation, each atom's
position can be described by four distances from
the core atoms. This representation is not only
stable for rotation and transition but also suitable
for pattern-matching. So, by taking a sequence
of atoms together with describing each by four
distances and atom type and looking up for the
same pattern, we can find similar configurations
and detect the scalar coupling constant.

4. CONCLUSION

This research of analyzing and visualizing the
molecular properties based on the KNN-KD tree
algorithm has confirmed that our method can
successfully construct the structure of molecules
with a comparable result to rule-based methods.
The findings also revealed that taking some
additional datasets into account can improve
the success rate of constructing the molecular
structures, such as dipole interactions, magnetic
shielding, and potential energy, Mulliken
charges.>?* With the benchmark studies, the
advantages and disadvantages of some data
structures, which are also used for distance
calculation, are presented. With our KNN-KD
tree algorithm in the construction of molecular
structures, utilizing models to predict the scalar

coupling constants has become much more
straightforward and correct. These facts motivate
us to conduct and investigate the relationship
between atoms in a particular molecule in the
future further.

In conclusion, this research makes
the following contributions: 1) proposing
a geometric-based approximated machine
learning model, namely the KNN-KD tree in
the construction of molecular structures only
with XYZ coordinates of atoms for training
the model. Unlike other data structures for
distance calculation, our method reduces the
pre-processing time, single query time and
computational resources in various essential
chemistry fields such as biomedical engineering,
drug discovery, and vaccine exploration. 2)
visualizing the molecular structure based on the
bonding schema, which was built by our KNN-
KD tree algorithm, to give a better understanding
and representational figures. 3) leveraging
the force field method in molecular modeling
because it can be extended to estimate the forces
and potential energy of a system of atoms.

Our future works concern a more in-depth
analysis of particular mechanisms and new
proposals to try different methods. Although the
results of the proposed algorithm are reasonable,
there is still room for improvement. There are
some features and some additional datasets
that are not accounted for that likely have a
significant effect on each different bonding type.
The algorithm may take dipole interactions,
magnetic shielding, potential energy, and
Mulliken charges into account to improve the
accuracy.
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