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TOM TAT

Chiing toi dua ra cac diéu kien di dé mot chudi luy thita hinh thic (tuong tng, mot diy
ctia chudi luy thira hinh thiic) clia cdc da thitc thuan nhat, lién tuc, gia tri Fréchet hoi tu trong
lan can ctia 0 trén khong gian Fréchet E (tuong tng, £ = CV) 14 hoi tu trong lan can ciia 0
tren moi duong théng phiic £, := Ca v6i mdi a € A (A la tap khong da cyc xa anh trong CV).
Két qua trong truong hgp E = CV la mot “phién ban gia tri Fréchet” cia dinh 1y Alexander ¢
dién nhung vé6i cac gia thiét yéu hon. Ching toi ciing chitng minh ring moi khong gian Fréchet
F ¢6 tinh chat Forelli manh, nghia 1a néu moi ham f: Ay — F sao cho f € C*(0) va fi,nay
1 chinh hinh véi moi dudng théng phiic l,,a € A, thi f chinh hinh trén Ay.

T khéa: Ham da diéu hoa dudi, ham chinh hinh, tap da cuc za dnh, chudi lug thita hinh thic.
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ABSTRACT

We give sufficient conditions to ensure the convergence on some zero-neighbourhood in a

Fréchet space E (resp. E = CV) of a formal power series (resp. a sequence of formal power series)

of Fréchet-valued continuous homogeneous polynomials provided that the convergence holds at a

zero-neighbourhood of each complex line ¢, := Ca for every a € A, a non-projectively-pluripolar

set in E. The result in the case E = CV is a Fréchet-valued analog of classical Alexander’s

theorem but under weaker assumptions. It is also shown that every Fréchet space has the strong

Forelli property, i.e, for a non-projectively-pluripolar set A C CV, every Fréchet-valued function
f on the open unit ball Ay € CV, f € C>(0), such that its restriction on each complex line £,

a € A, is holomorphic admits an extension to an entire function.

Keywords: Plurisubharmonic functions, holomorphic functions, projectively pluripolar sets, for-

mal power series.

1. INTRODUCTION AND PRELIMI-
NARIES

The focus of this paper is to study the
Fréchet-valued analogs and the generaliza-
tions of the following two classical theorems.

Forelli’s Theorem. ' If f is a function
defined in the unit ball Ay < CV, holomor-
phic on the intersection of An with every
complex line £ passing through the origin and
if f is of class C*° in a neighborhood of this
point, then it is holomorphic in Ay.

Alexander’s Theorem. 2 Let .Z be a
family of analytic functions on Ay C CN.
If the restriction of F to each complex line

*Corresponding author.
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through the origin is normal (resp. at the ori-
gin), then F is normal (resp. at the origin).

Recall that a family .# of analytic func-
tions on a complex manifold € is normal if
every sequence in .% has a subsequence which
converges uniformly on compact subsets of €2
either to an analytic function or to oo, and
that .%# is normal at a point € Q if there
exists a neighborhood W of x such that the
restriction of . to W is normal.

Forelli’s theorem is a radial analogue of
the fundamental theorem of Hartogs. Alexan-
der’s theorem allows us to obtain the Hartogs
theorem on the convergence of formal power
series in several complex variables.
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The problems of extensions and general-
izations of the above classical theorems for
holomorphic maps and vector-valued holo-
morphic functions have drawn attention of
mathematicians.

In this note, we will investigate these
results for the Fréchet-valued case in the
“strong” sense in which the functions are only
required that their restrictions on /N Ay are
holomorphic for every ¢ € £, a family of suf-
ficiently many complex lines passing through
the origin_

Families of “sufficiently many” complex
lines in the paper concern the notions of
pluripolar sets and projectively pluripolar
sets. These notions require some extra back-
ground material for their definition.

Let D be a domain in a locally convex
space F/. An upper-semicontinuous function
¢ 1 D — [—00,+00) is said to be plurisub-
harmonic, and write ¢ € PSH(D), if ¢ is
subharmonic on every one dimensional sec-
tion of D.

A subset B C D is said to be pluripolar
in D if there exists ¢ € PSH(D) such that
p # —oo and cp‘B = —00.

A function ¢ € PSH(E) is called homo-
geneous plurisubharmonic if

o(Az) =log |\l +p(z) YAeC, VzeE.

We denote by HPSH(E) the set of homo-
geneous plurisubharmonic functions on FE.
We say that a subset A C F is projectively
pluripolar if A is contained in the —oo lo-
cus of some element in HPSH(E) which is
not identically —oo. It is clear that projec-
tive pluripolarity implies pluripolarity. The
converse is not true (see [Proposition 3.2 b]).

Some properties, examples and coun-
terexamples of projectively pluripolar sets
may be found in the article. 3 We intro-
duce below a few examples in locally convex
spaces.

Example 1.1. Let E be a metrizable locally
convex space. Fix a € E. Then, the complex
line ¢, := Ca = {Xa : A € C}, hence, every
A C {,, is projectively pluripolar in E.
Indeed, let d be the metric defining the
topology on E. Consider the function
o(z) = —logd(z,4,) == —log inf d(z,w).

wELg

It is easy to check that ¢ € HPSH(E),
@ # —oc and £, C o~ (—o0).

Example 1.2. Let FE be a Fréchet space
which contains a non-pluripolar compact bal-
anced convex subset B. By the same proof
as in Example 1.1, the set 0B is pluripolar.
However, 0B is not projectively pluripolar
in .

Otherwise, we can find a function ¢ €
HPSH(E), ¢ £ —oco and 0B C ¢~ !(—0c0).
For every z € B we can write z = Ay for some
y € OB and |\| < 1. Then

¢(z) = p(Ay) =log |A[+¢(y) = —o0, Vz € B.
It is impossibe because B is non-pluripolar.

Example 1.3. By Theorem 9 of the research
4 and Example 1.2, a nuclear Fréchet space
having the linear topological invariant (ﬁ)
which is introduced by Vogt (see 5) contains
a non-projectively-pluripolar set.

We recall that a complex space or a lo-
cally convex space X is said to have Forelli
Property if every map f : Ay — X such that
f is of C*°- class in a neighborhood of 0 € Ax
and f ‘ AN is holomorphic for all complex
lines £ through 0 € Ay then f is holomorphic
on Ay. In 2005 L. M. Hai and N. V. Khue
6 studied the Forelli property for complex
spaces. They also investigated the relation
between these spaces with Hartogs spaces
and Hartogs holomorphic extension spaces
for holomorphically convex Kéhler complex
spaces.

Definition 1.1. A locally convex space F
is said to have the strong Forelli property if
every function f : Ay — F satisfying that:

https://doi.org/10.52111/qnjs.2024.18302
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(i) f belongs to C*-class at 0 € CV for
k>0,

(ii) for some mnon-projectively-pluripolar
subset A C C¥, the restriction of f on
each complex line ¢,, a € A, is holo-
morphic,

then there exists an entire function ]?on cN
such that f = f on ¢, for all a € A.

Note that, from Proposition 3.1 in the re-
search, 3 in CV, the following are equivalent:

a) A is projectively pluripolar;

b) A* i= {tz: t € C,|t| < \,z € A} is
pluripolar for each A > 0;

¢) u(A») = 0 where p is the Lebesgue
measure;

d) v(o(A*)) = 0 where v is the invari-
ant measure on the projective space
CPV~! and o : CV\ {0} — CPN-!
is the natural projection.

It follows that the condition (ii) in
Definition1.1 can be replaced by the following
condition:

(ii’) for some family £ of complex lines
through 0 € C" such that
,u(AN NUpeg E) > 0, the restriction of
f on each ¢ € .Z is holomorphic.

The main theorems of our note are the
following.

Theorem 1.1. Fvery Fréchet space has the
strong Forelli property.

Theorem 1.2. Let A C CN be a non-
projectively-pluripolar set and (fn)n>1 be a
sequence of formal power series of contin-
uous homogeneous polynomials on CN with
values in a Fréchet space. Assume that there
exists 7o € (0,1) such that, for each a € A,
the restriction of (fn)n>1 on , is a sequence
of holomorphic functions which is convergent
on the disk A(rg). Then there exists v > 0
such that (fn)n>1 is a sequence of holomor-
phic functions that converges on An(r).

https://doi.org/10.52111/qnjs.2024.18302

By the equivalence of a) and d) men-
tioned above, the hypotheses of Theorem 1.2
may be stated under an alternative form as
follows: Let B be a subset of An such that
v(o(B)) = 0 where v is the invariant mea-
sure on the projective space CPN =1 and
o : CN\ {0} — CPN~! is the natural pro-
jection. Assume that for some 9 € (0,1),
the restriction of the sequence (fp)n>1 on
each complex line ¢ through 0 € Ay with
(N B = {0} is convergent in A(rg).

Actually, Theorem 1.2 is not a generaliza-
tion of Alexander’s theorem because our re-
sult only refers to uniform convergence, not
to the normality of the sequence of formal
power series. Therefore, it is still an open
question that whenever we obtain a truly gen-
eralization of Alexander’s theorem. In other
words, “ Whether or not a version of Theorem
1.2 where the uniform convergence of the se-
quence (fnle,)n>1 on compact sets of A(rg)
is replaced by normality of this sequence on
A(rg) i.e., we allow convergence to oo uni-
formly on compact sets?”

The proof of the first main theorem will
be presented in Section 2. To prepare for the
proof, with the help of techniques of pluripo-
tential theory and functional analysis, we in-
vestigate the Hartogs Lemma for sequence
of plurisubharmonic functions for the infinite
dimensional case (Theorem 2.2). This result
is also essential to the Section 3 in which
we discus a problem closely related to the
two classical theorems mentioned above. The
main goal of this section (Theorem 3.1) is to
study the convergence set of a formal power
series of continuous homogeneous polynomi-
als between Fréchet spaces under the hypoth-
esis that it is convergent along a pencil of
complex lines through the origin.

Finally, the last section presents the proof
of the second main theorem of the paper.
Some results concerning to Vitali’s theorem
for a sequence of Fréchet-valued holomorphic
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functions (Proposition 4.3) will be shown to
help for our proof.

The standard notation of the theory of
locally convex spaces used in this note is pre-
sented as in the book of Jarchow. 7 A locally
convex space is always a complex vector space
with a locally convex Hausdorff topology. For
a locally convex space E we use E|_to de-

note E’ equipped with the bornological topol-
ogy associated with the strong topology S.

The locally convex structure of a Fréchet
space is always assumed to be generated by
an increasing system (||-||x)x>1 of seminorms.
For an absolutely convex subset B of E, by
Ep we denote the linear hull of B which be-
comes a normed space in a canonical way if B
is bounded (with the norm |- ||z is the gauge
functional of B).

We say that a Fréchet space E has the
property (LBy), and write E € (LBy) for
short, if Yoy 1 00, IpVq Ik(q) > ¢,

C(q) > 0,Vx € E,Im with ¢ <m < k(q) :

lzllg"em < C@)l@llmllz]IF-

This property is a linear toplogical invariant
which plays a very important role in modern
theory of Fréchet spaces. Khue, Hai, Hoan &
[Theorem 4.1] proved that if E' € (LBy) then
(E{)Or)lﬁ € (LBOO)

For further terminology from complex
analysis we refer to the research. ?

We use throughout this paper the follow-
ing notations: Ay(r) ={z € CV: ||z <r};
Any = An(1);A(r) = Aq(r); A = Ay
and /¢, is the complex line Ca.

2. THE STRONG FORELLI PROP-
ERTY OF FRECHET SPACES

This section is devoted to the proof of The-
orem 1.1. First we investigate the Hartogs
Lemma for a sequence of plurisubharmonic
functions in the infinite dimensional case.
This is essential to our proofs.

Lemma 2.1. Let (P,)p>1 be a sequence of
continuous homogeneous polynomials on a
Baire locally convex space E of degree < n.
Assume that
lim sup ! log |P,(2)] <0
n—oo T

for each z € E. Then for every e > 0 and ev-
ery compact set K in E there exists ng such
that

1

Elog\Pn(z)] <e Vn>ng, Vze K.

Proof. Since

limsup|Pn(z)]% <1 VzeF
n—oo
the formula
FERR) =D Pa(2)A"
n>1

defines a function f : E — H(A), the Fréchet
space of holomorphic functions on the open
unit disc A C C.

Let us check f is holomorphic on FE.
Given z € E'\ {0} and consider f(-z): C —
H(A) with

FE2)(N) =) Pa(2)A"g"
n>1
where k, = deg P, < n. Then f(- z) is holo-
morphic because for 0 < r < 1 we have
limsup (| P, (2)|]A")

N\

1 n

= lim sup(| P (2)| 5 )

n—0

< lim sup |Pn(z)|%r <r<l.
n—0

This means that f is Gateaux holomorphic
on FE.
Now for each £ > 1 we put

Ap:={z€ E: |Py(2) <kF vn>1}.

By the continuity of P,, the sets Ay are
closed in E. Moreover, E = |J,.~; Ai. Since
FE is a Baire space, there exists 7{:0 > 1 such
that IntAy, # @. Then f is holomorphic on
k—lolntAkO because

kg
P AGIEESY kOan" =Y 1<

n>1 n>1 "0 n>1

https://doi.org/10.52111/qnjs.2024.18302
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for 0 < r < 1. Hence, by Zorn’s theorem '°

[Theorem 1.3.1], f is holomorphic on E.
Now given K C F a compact set and

e > 0. Take 0 < r < 1 and denote
C:=sup{|f(z)(N)]: z€ K, |\ <r} <.

Then we have

RS f(Z)(§d| _ C
P = [ [ T S ek
ie,

1 O
|Pa(2)[" < .

Choose ng sufficiently large we obtain

1
COn
r

)

3=

|Pn(2)|m < <e® Vn > no.

The lemma is proved. O

The Proposition 5.2.1 in the research
' says that a non-empty family (uq)acr
of plurisubharmonic functions from the Le-
long class such that the set {z € CV
SUPyer Ua(2) < 00} is not L-polar is locally
uniformly bounded from above.

The next is similar to the above result in

the infinite dimensional case.

Theorem 2.2. Let B be a balanced con-
vex compact subset of a Fréchet space E and
(Pn)n>1 be a sequence of continuous homoge-
neous polynomials on E of degree < n. As-
sume that the set

1
{z € Ep : sup —log | P,(2)] < oo}
n>1"N

is not projectively pluripolar in Ep. Then
the family (% log | Py |)n>1 is locally uniformly
bounded from above on Ep.

Proof. Suppose that the family (% log | Py |)n>1
is not locally uniformly bounded from above
on B. Then there exists a sequence (u;)j>1 =
(% log|Py,|)j>1 such that

M; :=supuj(z) >j Vj>1.
z€B

https://doi.org/10.52111/qnjs.2024.18302

Take w € Ep\ B and for each j > 1 consider
the function

vj(€) = u; (¢ w) — M —log* (¢! ||wl|s),

for ¢ € A(JJw|/r) \ {0}. Obviously, v; is sub-
harmonic and, it is easy to see that v;(¢) <
O(1) as ¢ — 0. Hence, in view of Theorem
2.7.1in 1, v; extends to a subharmonic func-
tion, say v;, on A(|lw||p). Now, by the max-
imum principle, 7; < 0 on A(||lw[/g). In par-
ticular,

vj(1) = 9;(1) = w;(w) — M; —log™ [lw||p < 0.
Hence

uj(z)—M; <log" ||z||g for z € Ep,Vj > 1.
(2.1)
Then there exists zy € Ep such that
limsup exp (u;(z0) — M;) =:6 > 0. (2.2)
Jj—o0
For otherwise we would have
lim sup exp(u;(z) — M;) <0
Jj—00
at each point z € Ep. By Lemma 2.1, the se-
quence (exp(u;(z)—M;))j>1 is bounded from
above on any compact set in EFg. This would
imply from the research '9[Lemma 1.1.12]
that exp (u;(z) — M;) < 3 for all z € B and
all sufficiently large j. But then the last es-
timate would contradict the definition of the
constants M.
Now we choose a subsequence (u;, )p>1 C
(uj);>1 such that
lim exp(uj, (20)—M;,) =6 and M, >2F

k—00

for all k£ > 1. Consider the function

w(z) = Z27k(ujk - M;,), z¢€Ep.
k>1

In view of (2.1) we have the extimate
wi(2) = 27%(uy, — Mj,) —2Flog R <0

for z € Ep, ||z||p < R and R > 1. Thus wy is
Izllp < R}
and wy < 0. Hence, the function 2@1 Wy, =

plurisubharmonic on {z € Ep :

20 | Quy Nhon University Journal of Science, 2024, 18(3), 15-28
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w —log R, R > 1, is either plurisubharmonic
on {z € Ep: ||z||p < R} or identically —oo.
Consequently, as R can be chosen arbitrarily
large, w is either plurisubharmonic or iden-
tically —oo. Therefore, since w(zp) > —oo,
w € PSH(Eg). It is easy to see that w €
HPSH(Eg).

If 2 € Ep, sup,>; +1og |P,(z)| < oo then
> isq 27 Fuj, (2) < oo and, hence

w(z) < ZQ_kujk(z) - Z 1=-00

k>1 k>1

which proves that the set

1

{z € Ep :sup —log |P,(2)] < oo}
n>1 "7

is projectively pluripolar in Ep. This con-

tradics the hypothesis. O

Corollary 2.3. Let B, E and (Pp,)p>1 be as
in Theorem 2.2; in addition assume that B
contains a non-projectively-pluripolar subset.
Then the family (L 1og |Py|)n>1 is locally uni-
formly bounded from above on E.

Proof. 1t suffices to prove that E'g is dense in
E. Indeed, if the closure of the subspace Ep
is not equal to E then, by the Hahn-Banach
theorem, there exists ¢ € E’, ¢ # 0, such
that ¢(Ep) = 0. Then it is easy to see that
v:=log|p| € HPSH(E),v# 0, BC Eg C
{#z : v(z) = —oo}. This contradicts the fact
that B contains a non-projectively-pluripolar
subset. O

It is known that a subset with non-empty
interior in a Fréchet space is not pluripolar,
hence it is not projectively pluripolar. Then
by Corollary 2.3 we have the following.

Corollary 2.4. Let B be a balanced convex
compact subset of a Fréchet space E which
contains a mon-projectively-pluripolar subset
and (Pp)n>1 be a sequence of continuous ho-
mogeneous polynomials on E of degree < n.
If the set

1
{z € Ep :sup —log |P,(2)] < oo}
n>1 "7

has the non-empty interior in E then the
family (%log\Pn])nzl is locally wuniformly
bounded from above on E.

We are now in a position to prove the first
main theorem.

Proof of Theorem 1.1. Let F be a Fréchet
space, f : A, — F be a function which be-
longs to C*-class at 0 € C" for k > 0 and
A C C™ be a non-projectively-pluripolar set.
If the restriction of f on each complex line
Ly, a € A, is holomorphic. By the hypothesis,
for each k > 0 there exists r, € (0,1) such
that f is a C*-function on Ay(ry). We may
assume that r; \, 0. Put

Pu(z) = 1/ FAz)dA

IA|=1

27TZ )\k+1 9 z 6 AN(rk‘)

Then, for each £k > 0 and p > k, P, is a
bounded CP-function on Ay(r). Since A —
f(Aa) is holomorphic for all a € A we deduce
that

Pi(Ma) = \*Pi(a) forae A, X eC. (2.3)
By the boundedness of P, on Ay (%) we have
Pi(w) = O(Jw|¥) as w — 0.

On the other hand, since Py €
C*1(AN(rry1)), the Taylor expansion of
Py at 0 € Ay (r+1) has the form

}%(2):3 }:

a+pB=k

Prap(2) +|2l0(z)  (24)

where P, g is a polynomial of degree o in z
and degree § in Z and ¢(z) — 0 as z — 0.

In (2.4), replacing z by Az, [A\| < 1, from
(2.3) we obtain

Z Pk’a,g(z))\axﬁ + IXF|2Fo(A2)
a+p=k

= Z Pios(2)N"+XE|2|P0(2)  (2.5)
a+p=k

for z € rp4 1 A.

https://doi.org/10.52111/qnjs.2024.18302
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This yields that o(Az) = p(z) for X\ €
[0,1), and hence, o(z) = 0(0) = 0 for z €
rrr1A. Thus

Pk,aﬂ(z) =0 for>0andzé€ Tk+1A.

Note that rpi1A is also not projectively
pluripolar. It is easy to check that

Pkyoéwg =0 for g >0.

Indeed, for every ¢ € F’, the function

1
a deg Pk,a,ﬁ

u(w) log (¢ © Pr,a8)(w)]
is homogeneous plurisubharmonic on CV,
= —oo on 141 A. Since 141 A is not projec-
tively pluripolar, it implies that u = —oco and
hence ¢ o Py 5 =0 on CV for every ¢ € F'.
It implies that P} o3 = 0 on CN for B8 > 0.
Thus, from (2.4) we have

Prp(2) = Prro(z) = Z Co2®

la|=k

for z € An(rg+1) and Py is a homogeneous
holomorphic polynomial of degree k.

Now, let (|| |[mm)m>1 be an increasing fun-
damental system of continuous semi-norms
defining the topology of F. By the hypoth-
esis, for every m > 1

lim sup = log || Px(2)|lm = —o0  for z € A.
k—o0 k

Then, by Corollary 2.3, the sequence

(+log || Pi(2)|lm)k>1 is locally uniformly

bounded from above on C" for all m > 1.

Thus we can define

um(2) = lilrnsup1 log || Pe(2)lm, 2 € CN.
k—o00 k

By the research, '? the upper semicontinuous

regularization w), of u,, belongs to the Le-

long class £(C") of plurisubharmonic func-

tions with logarithmic growth on CV. More-

over, by Bedford-Taylor’s theorem 3

S i={2€CN: ul(2) #um(2)}

https://doi.org/10.52111/qnjs.2024.18302

is pluripolar for all m > 1.

On the other hand, by 3, A* := {ta: t €
C,a € A} is not pluripolar. This yields that

uy, = —oo for all m > 1 because ), = Uy, =

.=
—oo on A*\ S, and A*\ S,, is non-pluripolar.
Since u), > uy,, we have u,, = —oo form > 1.
Hence the series ) ;- Pr(2) is convergent for
z € CN and it defines a holomorphic exten-

sion fof f‘g for every a € A. O

3. THE CONVERGENCE OF A FOR-
MAL POWER SERIES BETWEEN
FRECHET SPACES

In mathematics, a formal power series is a
generalization of polynomials as a formal ob-
ject, where the number of terms is allowed to
be infinite.

The theory of formal power series has
drawn attention of mathematicians working
in different branches because of their vari-
ous applications. One can find applications
of formal power series in classical mathemat-
ical analysis and in the theory of Riordan al-
gebras. Specially, this theory lays the foun-
dation for substantial parts of combinatorics
and real and complex analysis.

A formal power series f(z1,...,2n) =
Y Carpan it 230 in CN, N > 2, with
coefficients in C is said to be convergent if it
converges absolutely in a zero-neighborhood
in CN. A classical result of Hartogs '* states
that a series f converges if and only if f,(t) =
f(tz1,...,tzn) converges, as a series in ¢, for
all z = (z1,...,2y) € CV. In other words, a
formal power series in several complex vari-
ables is convergent if it converges on all lines
through the origin. This can be interpreted as
a formal analog of Hartogs’ theorem on sep-
arate analyticity. Because a divergent power
series still may converge in certain directions,
it is natural and desirable to consider the set
of all z € CV for which f. converges. Since
f=(t) converges if and only if f,,(t) converges
for all w € CN on the affine line through z,
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ignoring the trivial case z = 0, the set of di-
rections along which f converges can be iden-
tified with a subset of the projective space
CPN~1. The convergence set Conv(f) of a di-
vergent power series f is defined to be the
set of all directions ¢ € CPN~! such that
f-(t) is convergent for some z € o~ !(¢) where
o : CN\ {0} — CPN~!is the natural pro-
jection. In the two-variables case, Lelong
proved that Conv(f) is an F,-polar set (i.e.
a countable union of closed sets of vanish-
ing logarithmic capacity) in CP!, and more-
over, every F,-polar subset of CP' is con-
tained in the Conv(g) of some formal power
series g. The optimal result was later ob-
tained by Sathaye '© who showed that the
class of convergence sets of divergent power
series in two-variables is precisely the class
of F,-polar sets in CP'. Levenberg and Mol-
zon, in 7, showed that if the restriction of
f on sufficiently many (non-pluripolar) sets
of complex line passing through the origin is
convergent on small neighborhood of 0 € C
then f is actually represent a holomorphic
function near 0 € CV. By using delicate es-
timates on volume of complex varieties in
projective spaces, Alexander’s theorem men-
tioned above was proved. This follows readily
that if the restriction of a formal power series
f on every complex line passing through the
origin in CV is convergent then f is conver-
gent ? [Theorem 6.3].

The main result of this section is

following.

Theorem 3.1. Let A be a non-projectively-
pluripolar set which is contained in a balanced
convexr compact subset of a Fréchet space E
and f =%, <, Pn be a formal power series
where P, are continuous homogeneous poly-
nomials of degree n on E with values in a
Fréchet space F. Assume that for each a € A,
the restriction of f on the complex line £, is
convergent. Then f is convergent in a neigh-
bourhood of 0 € E if one of the following
holds:

(a) E is Schwartz.
(b) F € (LBx).

Proof. We divide the proof into three steps:
(i) Step 1: We consider the case where
F =C. It follows from the hypothesis that

limsup\Pn(z)ﬁ <oo VzeA

n—oo

Then, by Corollary 2.3 there exists a zero-
neighbourhood U in E such that

sup{\Pn(z)]% czeUn>1} =M < .

This implies that f is uniformly convergent
n (2M)~1U.

(ii) Step 2: We consider the case where F
1s Fréchet. By the step 1 we can define the
linear map

T:F, — H(g)

by letting

n>1

where H(0g) denotes the space of germs of
scalar holomorphic functions at 0 € E. Sup-
pose that uq — win F}_ and T(us) — v in
H(0g) as a — oo. This implies, in particular,
that [T'(uq)](z) — v(z) for all z in some zero-
neighbourhood U in E. However, for z € U

we have
[T (e — )] (2) = Y (ua — u)(Pa(2))
n>1
= nlggo (Ua — u)(Pn(2))

Then [T'(uq)](z) — [T(u)](z) for all z € U.
This implies that v = T'(u). Hence T has a
closed graph.

Meanwhile, since F is Fréchet, by
the research 7 [Theorem 13.4.2] we have
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B(F', F)por = n(F', F) on F', where n(F’, F)
is the corresponding locally convex inductive
limit topology on F' = |Jy oy Fie with %
consists of closed and absolutely convex sets
in F. This implies that F{ __is ultrabornolog-
ical. On the other hand, because E is metriz-
able, we have
H(0g) = lim (H>(Va), [| - [|n)
n—oo
where (V,,)n> is a countable fundamental
neighbourhood system at 0 € E, and || - ||,
is the norm on the Banach space H*(V},)
given by [|flln = sup.ey, |f(2)[- Hence, by
the closed graph theorem of Grothendieck '8
[Introduction, Theorem B], T is continuous.
Next, we shall show that there exists a
neighbourhood V of 0 € E such that T :
FII)OI‘
We consider two cases: (a) F is Schwartz;
(b’) E is Banach and F € (LBy).
The case (a): Since E is Schwartz, by 1

[Theorem 2 and Corollary 9], H(0g) has a
0

— H*°(V) is continuous linear.

continuous norm. Using Proposition 1.4 in 2
we deduce that there exists a neighbourhood
V of 0 € E such that T : F{ . — H>(V) is
continuous linear.

The case (b’): Since E is Banach, it fol-
lows from 2! [Theorem 1] that H(0g) € (£2).
Then, because (Fy,,)j € (LBx), using The-
orem 3.2 in ° we deduce that there exists a
neighbourhood V' of 0 € F such that T :
F . — H>(V) is continuous linear.

Now we define the map f: V — Fl' by
the formula

[F(2)](u) = [T(w)](2),

Since T is continuous and point evaluations

zeV,ueF,.

on H(V)por are continuous (see the research
9 [Proposition 3.19]) it follows that f(z) €
F/l

bop for all z € V. Moreover, for each fixed

u € F{__ the mapping
z eV = [T(u)](z)
is holomorphic, that is
FiV = (B 0(For, Flor)

https://doi.org/10.52111/qnjs.2024.18302

is a continuous mapping. For alla € Vb € FE
and all u € F{ _ the mapping

o~

{teC: a+theV}>3A—uo f(a+ Ab)

is a Gateaux holomorphic mapping and hence

[V = (For 0 (Flor, Fior)

is holomorphic.

By the research 7 [8.13.2 and 8.13.3], F}_
is a complete locally convex space. Hence by
22 [Theorem 4, p.210] applied to the complete
space F{ = we see that (F} ,o(F ., F.))
and ()} have the same bounded sets. An

application of 2 [Proposition 13] shows that
fiV = (Ros

is holomorphic.
Let j denote the canonical injection from
Finto F".Ifze B:=VN{ta: t € C,a € A}

and f(z) # j(f(z)) then there exists u € F’
such that

~

F2)(w) # 3(f(2))(u) = u(f(2)).

This, however, contradicts the fact that for

all z € B we have

n>1

We now fix a non-zero z € B. Then there ex-
ists a unique sequence in F”, (ay .)2 , such
that for all A € C

Frz) = i": Ap A"
n=0

~

Since f(0) = f(0) = ap,. it follows that
ap,. € F. Now suppose that (a;.)j_o C F.

~

When || < 1, f(Az) = f(Az) € F. Hence, if
AeC,0<|A <1, then
fOz) = YigaN & —n—1
Antl - Z ajvz)\] €F
j=n+1

Since F' is complete we see, on letting A tend
to 0, that a,41. € F. By induction a, . € F
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~

for all n and hence f(Az) € F for all A € C
and all z € B. Since f is continuous and F
is a closed subspace of (F,.)} (see the re-
search 24 [Lemma 2.1]) we have shown that
]?: V' — F' is holomorphic.

Hence, the series En21 P, is convergent
on V to f.

The proof of the case (a) is complete here.
We continue the last step for the proof of the
case (b) as follows:

(iii) Step 3: Let {Up}n>1 be a decreasing
basis of neighbourhoods of 0 € E. By K(E)
we denote the family of all balanced convex
compact subsets of E. By the case (b’) in Step
2, for each K € K(F) there exists ex > 0
such that f is uniformly convergent on ex K.
Put

W = U €KK.
KeK(E)

Obviously, f is convergent on W. It remains
to check that W is a neighbourhood of 0 € E.
Assume the contrary, that W is not a neigh-
bourhood of 0 € E. Then for each n > 1 there
exists z,, € U, \ W. Put

Ky :=conv{0, x1,x9,...}.

By 2° [Corollary 6.5.4] we can find K; €
K(E), Ky C Ki, such that Ky is relatively
compact in Fg,. It implies that z, — 0 in
Ep, . Thus there exists ng > 1 such that for
all n > ng we have x,, € e, K1 C W. This
is incompatible with =z, being disjoint
from W. 7

4. ALEXANDER’S THEOREM FOR

FRECHET-VALUED FORMAL POWER
SERIES

We will present the proof of Theorem 1.2 in
this section. Our work requires some extra
results concerning to Vitali’s theorem for
a sequence of Fréchet-valued holomorphic
functions.

Remark 4.1. In exactly the same way, The-
orem 2.1 in the research 26 is true for the
Fréchet-valued case.

Lemma 4.1. Let E,F be Fréchet spaces,
D C E be an open set. Let f : D — F be
a locally bounded function such that o f is
holomorphic for all p € W C F', where W is
separating. Then f is holomorphic.

The proof of Lemma runs as in the proof
of Theorem 3.1 in the research, 25 but here
we use Vitali’s theorem in the research 27
[Proposition 6.2] which states for a sequence
of holomorphic functions on an open con-
nected subset of a locally convex space.

Lemma 4.2. Let D be a domain in a Fréchet
space E and f : D — F be holomorphic,
where F is a barrelled locally convex space.
Assume that Dy = {z € D : f(z2) € G} is
not nowhere dense in D, where G is a closed
subspace of F. Then f(z) € G for all z € D.

Proof. (i) We first consider the case G = {0}.
On the contrary, suppose that f(z*) # 0 for
some z* € D\ Dy. By the Hahn-Banach
theorem, we can find ¢ € F’ such that
(po f)(z*) # 0. Let 29 € (intDg) N D and
let W be a balanced convex neighbourhood
of 0 € E such that zg + W C Dg. Then by
the continuity of f we deduce that f = 0
on zg + W. Hence, it follows from the iden-
tity theorem (see the research 27 [Proposition
6.6]) that f = 0 on D. This contradicts above
our claim (¢ o f)(z*) # 0.

(ii) For the general case, consider the quo-
tient space F'/G and the holomorphic func-
tionwo f: D — F/G where w: F — F/G
is the canonical map. Then wo f =0 on Dy.
By the case (i), wo f =0 on D. This means
that f(z) € G for all z € D. O

Proposition 4.3. Let E, F' be Fréchet spaces
and D C E a domain. Assume that (fn)n>1
s a locally bounded sequence of holomorphic
functions on D with values in F. Then the
following assertions are equivalent:

https://doi.org/10.52111/qnjs.2024.18302
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(i) The sequence (fn)n>1 converges uni-
formly on all compact subsets of D to
a holomorphic function f: D — F;

(i) The set Dy = {2z € D
lim f,,(z) exists} is not nowhere dense
n
m D.

Proof. Tt suffices to prove the implication (ii)
= (i) because the case (i) = (ii) is trivial. De-
fine f: D — (X(N, F) by f(2) = (fu(2))n>1,
where (*°(N, F') is the Fréchet space with
the topology induced by the system of semi-
norms

lzlle = l(zi)iz1ll = sup ||z, VE,
K2

Vo = (1'1')1‘21 S KOO(N, F)

For each k¥ € N we denote pry
(>*(N,F) — F is the k-th projection with
pri.((w;)ien) = wg. Obviously

W ={popry; p€ F', ke N} CL*(N,F)
is separating and
popriof=¢oprio(fa)ns1 =90 fi

is holomorphic for every k& > 1. Then by
Lemma 4.1, f is holomorphic.
Since the space
G = {(w;)i>1 € (°(N, F) : lim w; exists}
- 1—00

is closed, by the hypothesis, f(z) € G for
all z € Dy. It follows from Lemma 4.2 that
f(z) € G for all z € D. Thus f(z) =
lim; ,~ fi(z) exists for all z € D. Note that
®: G — F given by ®((yi)ien) = im; 00 yi
defines a bounded operator. Therefore f =
do f is holomorphic.

Finally, in order to prove that (f;);>1 con-
verges uniformly on compact sets in D to f,
it suffices to show that (f;)i>1 is locally uni-
formly convergent in D to f. Since (fi)i>1
is locally bounded, by 27 [Proposition 6.1],
(fi)i>1 is equicontinuous at every a € D.
Let a be fixed point of D. Then for every

https://doi.org/10.52111/qnjs.2024.18302

balanced convex neighbourhood V of 0 in F'
there exists a neighbourhood U} of a in D
such that

fi(2)—fi(a) € 37V, V2 € UL, ¥i > 1. (4.1)

Since lim f; = f in D, we can find ig > 1
1—r 00
such that

fila) — f(a) €37V, Vi>ip. (4.2

By the continuity of f, there exists a neigh-
bourhood U2 of a in D such that

fla) = f(z) €37V, VvzeU2 (4.3)

From (4.1), (4.2) and (4.3), for all z € U, =
Ul NU2 for all i > iy we have

fiz) = f(z) e V. (4.4)
The proof of the proposition is com-
plete. O

We now can prove Theorem 1.2 as follows.

Proof of Theorem 1.2. As in the proof of
Theorem 3.1, for each n > 1, define the con-
tinuous linear map Ty, : F{ . — H(0Ocn) given
by

To(u) =uofn,, ue€F,.

By Theorem 3.5 in the research, 3 the se-
quence (T),(u))n>1 converges in H(Ocn) for
every u € F/ . Since F/ . is barrelled
(see the research 7 [13.4.2]) it follows that
the sequence (7,)n,>1 is equicontinuous in
L(F,.

topology. As in the proof of Theorem 3.1, by

H(0Oc~)) equipped with the strong

Theorem 3.2 in ° we deduce that there exists
a neighbourhood U of 0 € F}__such that

U 7.0)

n>1
is bounded in H(Ocn). By the regularity
of H(Ocn), we can find r € (0,79) such
that (,,~ T (U) is contained and bounded in
H>(Ap(r)). This yields that (fn)n>1 is con-
tained and bounded in H*(Ay(r), F). Since
for each z € An(r) the sequence (f“‘ez)"zl
is convergent in Aj(rg) C ¢,, by Remark 4.1,

26 | Quy Nhon University Journal of Science, 2024, 18(3), 15-28
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the sequence (f(2))n>1 is convergent for ev-
ery z € An(r). On the other hand, because
(fn)n>1 is bounded in H*>(Ay(r),F), by
Proposition 4.3 it follows that the sequence
(fn)n>1 is convergent in H(An(r), F). O
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