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TOM TAT

Du b4o qué trinh giam sat kinh doanh 1a mét nhiém vu dang chudi thoi gian ddy thach thire do ban chat
phtc tap va bién thién ciia cac quy trinh kinh doanh, lién quan dén viéc du doan céc truong hop dang dién ra nhu
hoat dong tiép theo, hau td hoat dong va du doan thoi gian con lai trong mot quy trinh kinh doanh. Qua trinh diém
thoi gian duoc st dung rong rai d& mé hinh hoa chudi cac su kién xay ra & cac khoang thoi gian khong dong déu,
dé mo hinh hoa thoi gian xay ra va nim bit cac phu thudc thoi gian giita cac sy kién. V6i nhitng tién bo gan day
trong mang no-ron siu, Qué trinh diém thoi gian sdu da ndi 1én nhu mot cach tiép can day hira hen dé ndm bit cac
mau phtec tap trong chudi su kién véi ddu thoi gian. Do d6, Qua trinh diém thoi gian sdu c6 thé 14 mot cach tiép
can tiém ning dé du doan qua trinh giam sat kinh doanh. Trong bai bao nay, chung toi thir nghiém va xem xét hiéu
qué cta cac nghién ctru gin day trong Qua trinh diém thoi gian sau déi voi van dé giam sat quy trinh kinh doanh
du doan. Két qua cta ching toi cho thiy ring cac phuong phap Quaé trinh diém thoi gian sdu c6 tiém ning trong
hoat dong tiép theo va du doan thoi gian con lai trong du doan quy trinh giam sat kinh doanh. Nhiing phat hién nay
¢6 thé hitu ich cho cac chuyén gia va nha nghién cru quan tim dén viéc phat trién cac hé thong du doan giam sat
cho cac quy trinh kinh doanh.

T khoa: Gidm sdt qud trinh kinh doanh, qud trinh diém thoi gian, mang no-ron séu.
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ABSTRACT

Predictive business process monitoring is a challenging time series task due to the complex and dynamic
nature of business processes, which involves predicting the ongoing cases in terms of the next activity, activity
suffix, and remaining time prediction on a business process. Temporal point processes (TPPs) are widely used to
model sequences of events happening at irregular intervals, to model the occurrence times of events, and to capture
the temporal dependencies among them. With the recent advances in deep neural networks, deep TPPs have
emerged as a promising approach for capturing complex patterns in event sequences with occurrence timestamps.
Hence, deep TPPs can be a potential approach to tackle business predictive monitoring tasks. In this paper, we
experiment and review the effectiveness of recent research on deep TPPs on the predictive business process
monitoring problem. Our results suggest that TPP methods have the potential in the next activity and remaining
time prediction in the predictive business process monitoring problem. The findings can be helpful to practitioners
and researchers interested in developing predictive monitoring systems for business processes.

Keywords: Business process monitoring, temporal point process, deep neural network.

1. INTRODUCTION concerned with the analysis of these logs,

A business process is a collection of tasks tackling it from different perspectives such as

performed asynchronously by various resources, discovering the underlying process model from

such as humans, software, or hardware, to
achieve a specific goal.! The execution of these
tasks is tracked and documented in an event log,
which records details such as the identifier of the
case, the event performed, and the timestamp
of the event.? There may also be optional case
attributes, which are shared by events of the same
case, or event attributes that are unique to each
event. Business process mining is the discipline

*Corresponding authors.

Email: hung.ntt@unb.ca
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the log, checking that the executions registered
in the log are conformant with the process
model, or extracting or inferring analytics that
enhances the description of what has happened
in the process executions.® Predictive monitoring
is a process mining technique that predicts how
an ongoing process case will unfold using the
event log's information. The ability to make
predictions is beneficial for anticipating issues
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before they arise, enabling the reallocation of
resources before they are wasted, and providing
recommendations.*

Studying the temporal distribution of
events and discovering the relationships among
different types of events is a great scientific
approach for predictive monitoring and
understanding the dynamics and mechanism of
events occurrence.”® One of its choices is the
Temporal Point Process (TPP), the stochastic
process with marked events on the continuous
domain of time, which can naturally capture the
clustering or self-correcting phenomena of such
sequences of events.!®!! Often, the rate of event
occurrence, known as conditional intensity, is
modeled as a function of time based on the prior
observation of events to capture the dynamics of
the process. Given that the conditional intensity
function (CIF) entirely governs the distribution
of such a process, statistical prediction, and
inference can all be performed via the CIFs.

Despite significant advancements in
TPP, especially in models based on deep neural

networks (DNNs), most of these models use
Table 1. Excerpt of a Helpdesk’s business process log.

different history encoders to embed historical
events and various forms of intensity functions
that are parameterized by the embedded
historical sequence of events.'>'7 Also, to our
knowledge, no experiment has been conducted
on the efficiency of TPP in monitoring the
business process.'?

Hence, in this paper, we contribute to
defining a data preprocessing procedure for the
business process monitoring data set to suit
the deep TPP models and evaluating different
combinations of TPP methods regarding the
history encoders and CIFs. We experiment
to evaluate the capability and ability of deep
TPP models on the predictive business process
monitoring datasets.

2. BACKGROUND

This section provides an overview of the
key concepts and techniques used in the
study, including predictive business process
monitoring and TPPs. It lays the foundation for
understanding the experiments and results.

2.1. Predictive business process monitoring

Case ID Activity Resource Timestamp

Case 1 Assign seriousness Value 1 2012/10/09 14:50:17
Case 1 Take in charge ticket Value 1 2012/10/09 14:51:01
Case 1 Take in charge ticket Value 2 2012/10/12 15:02:56
Case 1 Resolve ticket Value 1 2012/10/25 11:54:26
Case 1 Closed Value 3 2012/11/09 12:54:39
Case 2 Assign seriousness Value 4 2012/04/03 08:55:38
Case 2 Take in charge ticket Value 4 2012/04/03 08:55:53
Case 2 Resolve ticket Value 4 2012/04/05 09:15:52
Case 2 Closed Value 5 2012/05/19 09:00:28

The input of business process mining
techniques is an event log, usually composed of
events with at least a case identifier, an activity,
and a timestamp, and, optionally, case attributes,
which are values shared by all the events of
the same case, and event attributes, which are
specific of each event.'”* A sample log from
the Helpdesk data set is shown in Table 1, part

of a real-life help desk event log from an Italian
Company.?' This event log provides information
about each event's case identifier, activity,
timestamp, and resource.

Given a certain event prefix of a running
case, predictive monitoring is concerned with
forecasting how different aspects of the next
event or sequence of events will unfold until
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the end of the case. There are several prediction
targets, such as next activity, next activity
suffix, next timestamp, next remaining time,
next outcome, next attributes, and next attribute
suffix.”? In this paper, our interest is the next
activity and the next timestamp prediction.

Formally, m;, #;, e; represent the activity,
timestamp, and event, respectively. Let hd J (o)
be an event prefix such as hdj(c) =(en....e).
Two tackled problems can be defined as the
following functions Q using the newly predicted
activities as new inputs for the next prediction
until the dummy activity representing the end of
the case (“[EOC]”) is reached:

e The next activity prediction problem:
QM (hd] (G)): m'kH .

e The next timestamp prediction problem:
Qr (hd” (6))=tsa.

2.2. Temporal point processes (TPPs)

In this section, we introduce the definition of
Marked TPP and CIF.

2.2.1. Marked TPP

Marked TPP is a random process representing as
an event sequence X= {(¢,, m, ),...,(ty, my)} With
the increasing arrival times of events {f;} <
and markers {m;}q<<y, such that #€[0,7),
t;<ti, Vi>1 where N is the number of events.

The mark is equivalent to the event's
activity within the context of the business process.
Thus, both terms can be used interchangeably
afterwards. The inter-event time t; = ¢, - £, is
also considered due to their convenience in
computing.'

Categorical marks M = {1,2,..., K}
occurring in the time interval [0, 7) of the type-k
event. The history #(?) = {(¢;, m; ), ;< ¢t} which
can be considered the event prefix hd/ (c) in the
business monitoring context.

The task of TPP models is to parameterize
the K conditional intensity function (CIF) & (),
which can be characterized as follows:

https://doi.org/10.52111/qnjs.2024.18501

2 (0) = A (e]30(0)
3 Pr(eventoftype kin [t,t + At) | H,)

= lim
At—0+ At

which is defined as the expected instantaneous
rate of happening events given the history. The *
symbol indicates the conditioning on the history
H(?).

Due to the TPP modeling the distribution
of the next timestamp ¢ or inter-event T; time
under the history #(t;), the next timestamp
prediction task is equivalent to considering the
next timestamp #; given 4 (¢;) denoted as follows:

Qr(H®) =P/ (®)
Given the CIF, the distribution P;(¢)
can be represented by
functions:!»1%:1623.24

any following

1. Probability density function (PDF): £(¢)

2. Cumulative distribution function (CDF):
F () = J,' f; w)du

3. Survival function: S;(t) =1 — F;(t)

4. Hazard function: ¢;(t) = f;"(t)/S; (t)

5. Cumulative hazard function (CHF):
®; (t) = [, ¢ Wdu

Here, we pick the PDF of the type-k
event at time t as the parametric form, which is
defined as:

t

fz?(t)=l*k(t)e><p<—f l}i(u)du> (1)
t

i-1

where exp (— fti 1)\;(u)du) is an exponential
term where the exponent is the negative integral
from t;_; (the time of the last event before ¢,
namely i — 1 = argmax;<,{t;, t; <t}) to t of
the CIF. This integral represents the expected
number of type-k events at time u, which
happens in the time interval (t;_;,t]. The

exponential of the negative of this value
penalizes the presence of other events in the
interval, making it less likely for a new event to
occur at time t. The product of these two parts
gives the probability density of an event of
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type k occurring strictly at time t. Note that we
must integrate this density over that interval
to obtain the probability of an event occurring
within a specific time interval. By aiming to
parameterize a model to fit the timestamp
distribution, the TPP can infer PDF or CIF for
timestamp prediction, including the next event's
timestamp and activity prediction.

2.2.2. Conditional Intensity Formulation (CIF)
The CIF with parameters ©,(t) is written as
Ak (t; Oy (t)|3-[(t)). The parameter 04 (t) is
considered a piece-wise function of ¢ as:

Ok (8) = xr(hy)
where t € [t;_;,t;). The formula means that the
new occurrence of the type-k event changes the
h; and thus updates the 0 (t).

The choice of the family of CIF functions
to approximate the target CIF is critical because
the function's ability to approximate accurately
determines the TPP's performance in fitting the
distribution. Additionally, Equation (1) indicates
that the integral term is unavoidable if we
maximize the likelihood ofthe observed sequence
of events. Hence, the challenge in computing
the log-likelihood is the high computational
cost due to the integral term. The closed form
of this integral term, such as cumulative
hazard function, can make the computation of
likelihood feasible.!>*2* In conclusion, the goal
of approximating the target CIF is to choose a
family of functions in the closed integral form
with powerful expressivity.

2.2.3. Modeling the marks

In the business monitoring context, where
multiple event types exist, the next activity
prediction task is determining the most probable
event type based on historical data, which can be
dealt with as the categorical classification task.
It is generally achieved by first converting the
historical encoding to logit scores of a discrete
distribution, as shown in the following equation:

k(h;) = logit(m,) )

where logit(m;) € R, x: R? - RK,

Then, we apply a softmax function to
transform logit scores into the categorical
distribution, which is the solution to the next
activity prediction task as follows:

Qu(H (@) = Pr(m, = k|#H (1))
= softmax(logit(r’n\l))k

where softmax(logit(71,)), is to choose the k-th
mark from its output. By forming the loss of
activities as the logit scores, the cross-entropy
loss for categorical classification is added to the
log-likelihood loss given the actual activity m of
the i-th event to maximize the joint likelihood
of the next timestamp and activity, which is
considered independent. Several works on
maximizing joint likelihood in conditional
forms are proposed, such as time conditioned
on marks*? and marks conditioned on time,"
which can capture the dependencies between
timestamp and activity and leverage the TPP
models performance in predicting the timestamp
and activity simultaneously. In our experiment,
we utilize the idea of using the joint negative
log-likelihood (NLL) under the independence
between the next timestamp and activity, with
the type-k mark for a single sequence X for
categorical marks computed as:

—logp (X)
K

= iz —Pr(mm, = k|7 (D)) “

i=1k=1
K

D R®

k=1

+
&

3. CLASSIFICATION OF TPP MODELS

This section introduces the classification of TPP
models to solve the predictive business process
monitoring problem. As illustrated in Figure 1,
our procedure considers two essential parts of a
deep TPP: the history encoder and the CIF.

https://doi.org/10.52111/qnjs.2024.18501
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Table 2. The classification of all options for each
component by history encoder, mixture distribution,
and prediction target.

Recurrent neural network
(RNN),
History Gated recurrent unit (GRU),
Encoder Long-short term memory
(LSTM), Attention, Fourier
Transformer (FNet)
. Log-Normal, Gompertz, Log-
Mixture )
o Cauchy, Exponential decay,
Distribution .
Weibull
Prediction Next timestamp, Next activity

3.1. Historical event encoders

Since CIF or PDF is a function of t and historical
events before t, namely #/(t), we have to encode
the history sequence of each event (t, m;) as a
feature vector e; to formulate the CIF or PDF of
the occurrence of different events to model the
process. For the i-th event's history, # (t;), j-th
event in the history set is embedded in a high-
dimensional space including time and mark
features, as follows:

e = [o(5); ET™]
where:

e o represents the time feature that
transforms one-dimension temporal information
t (or inter-event time 1) into a high-dimension
vector directly or via its logarithm!'®*® or
trigonometric functions.'*?’

e E represents the mark feature, an
embedding matrix for marks, and m; is the one-
hot encoding of mark ;.

e A historical encoder H can be obtained
via concatenation of the sequence of embedding
{e,, e,,...,e.1)} into a vector space of dimension
D under the following formula:

h; = H({es; €25 .5 €i-1})

H can be chosen as Recurrent-based
encoders, Attention-based encoders, or Fourier
transform encoders, and #; is utilized for the CIF
parameterization.

https://doi.org/10.52111/qnjs.2024.18501

3.1.1. Recurrent-based encoders

Recurrent-based encoders, including RNN
units, GRU, and LSTM, can be used as history
encoders.'*!® Their CIF can be formulated as
follows:

ho = 0; h; = RNN(e;—1, h;—1)

where the initial state of the history encoder, Ay,
is set as zero. For each subsequent time step i, the
new state, /4;, is updated based on the previous
state, 4,1, and the previous event, e, through
the RNN function. The RNN takes as inputs the
previous state and the previous event and outputs
the new state. This state represents the RNN's
memory, encoding information about past events
that it can use to predict future events.

The advantage of using recurrent-based
encoders as the history encoder is that it requires
low storage space due to the capability of serial
computing. The states and events are processed
one at a time, meaning that the RNN does not
need to store all of them at once, which can be
beneficial in situations where storage space is
limited.

However, there are also disadvantages
to this approach. The serial computing nature
of RNNs can limit their computational speed
in both the forward and backward processes.?®
Additionally, RNNs can suffer from issues
such as the gradient vanishing effect, where the
gradients used in learning become very small,
making learning slow or even impossible.” They
can also suffer from long-term memory loss,
struggling to retain information about events that
occurred long ago. These issues can potentially
compromise the performance of the RNN history
encoder.

3.1.2. Attention-based encoders

Attention-based encoders are part of encoder-
decoder architectures that utilize the concept
of attention. This mechanism allows models to
focus on relevant parts of the input sequence
when generating an output.’® Self-attention is
proposed as the history encoder in TPPs with fast
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Figure 1. The procedure of TPPs framework for predictive business process monitoring.

parallel computing and the capability of encoding
more long-term sequences than recurrent-based
encoders.'? The attention-based history encoders
for CIF can be defined as follows:

Yizi (e ei)w(e)
iZid(eeimn)

where 4, represents the encoded history at time .

hi:

This history is computed as a weighted sum of
transformed event embeddings y(e;), where the
attention mechanism determines the weights
¢(ej, ei.1). The attention mechanism ¢(-,7) is a
function that takes two event embeddings as
inputs and outputs a scalar called the attention
weight. This weight determines the importance
or relevance of the event ¢; when encoding the
history at the time i. The transformation function
y transforms the event embedding e; into a
series of D-dimensional vectors called values.
These transformed embeddings are then used to
compute the encoded history.

While attention-based encoders overcome
some of the problems with RNNs, their space
complexity of the attention matrix is O(N?),
which can become problematic when dealing
with very long sequences because the attention
mechanism computes
between all events, leading to a quadratic increase
in storage requirements as the number of events

pairwise interactions

increases.’’ This problem can be temporarily
resolved by limiting the encoder only to access
the last L events {e;y,..., ¢;.1 }, which can reduce
the time complexity to O(NL)."

3.1.3. Fourier transform encoders

The Fast Fourier Transform (FFT) module was
generally used in the natural language processing
(NLP) field*? and recently adopted into the history
encoder family under the TPP context called
FNet, which aims to speed up the computation
and replace the attention mechanism.

hi = Top, (FFT([FFT(e,); ...; FFT(ei)])}

where the FFT (-) represents the FFT, which
operates on the events' embedding, then on the
whole sequence. Then, Top,, {-} means choosing
the highest p frequencies in the set as the history
encoding. The dimension of the feature vector
e; has to equal D dimension. Top-p needs to
be chosen due to the unequal event embedding
history sequence length, so the padding operation
is required for batch processing as many
sequences contain the same padding values,
which contain useless information and lead to
low-frequency values in spectra. Therefore,
filtering the low frequency can capture and retain
more information about the historical sequence
in the high frequency.

https://doi.org/10.52111/qnjs.2024.18501
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FFT encoder inherits fast computational
time complexity in O(NlogN) and the ability
to capture long-term patterns due to the global
property of the sequences' spectrum.’* However,
one disadvantage of this approach is that the
backward process of gradient propagation leads
to significant memory complexity.

3.2. Mixture distribution

The mixture distribution family is the major
component in TPP that approximates the target
PDF under CIF.

3.2.1. Log-normal mixture

Log-normal Mixutre is proposed to approximate
any distribution due to the feasible computation
of its PDF and cumulative distribution function
(CDF) in the closed form of CIF and CHF, where
the mixture form reads as follows: !

fL*ng(t)
_ z - exp (_ (n(t —t;—q) — P—s)z)
< *tog mm 20?2

where t € [t;_1,t;). S are mixture distribution
numbers, {Ws}i<s<s are non-negative mixture
weights and ¥5_; ws = 1, 05 > 0Vs.

The distribution of the next timestamp
A, (t) under the log-normal mixture can be
modeled by different functions such as PDF,
CDF, survival function, hazard function, or
cumulative hazard function. Moreover, the
preferable function to model the distribution
A () is the cumulative hazard function due
to its ability to compute the NLL in the closed
form without numerical integration, leading to
the loss function in Eq. (3) replaces the f’;(t)
by the @ (t) . Although the CDF has no closed
form, the approximation of the function has
minor deviation and permits gradient back-
propagation, allowing both the forward and
backward processes.

3.2.2. Gompertz mixture

Gompertz Mixture is proposed to predict both
timestamps and marks of future events without
any prior knowledge about the hidden functional

https://doi.org/10.52111/qnjs.2024.18501

forms of the latent temporal dynamics.'* The CIF
of Gompertz distribution reads as:

A(t) = nexp(B)

where 1, B > 0. The corresponding PDF can be
obtained as follows:

Aep () = exp(B(t — tj—1) + v h; + by)
which its PDF reads:

fép(t) =nexp (B(t —ti—1)

D exp( — ) - 1))

for t € [t;_q,t;), where n = exp(vThi + bt), and
B > 0. The process fgp(t) becomes the Poisson
distribution when = 0. The mixture can be
formulated as follows:

S
fG*PM(t) = Z Ws s €XP (Bs(t - ti—l)
s=1

- ‘;—j (exp(Bs(t — t;_1)) — 1))

for t € [ti_4,t;), where Bs >0 and ng > 0 for
any s. The parameters are obtained as a function
of history encoding h; for t € [t;_q,t;) as
follows:

0(t) = {ws (1), Bs(£), s () }1<5<s = x(hy)

3.2.3. Exp-decay mixture

Zhang et al.'? extend the expressivity of the
multivariate Hawkes Process by the Self-
Attentive Hawkes Process (SAHP) by adapting
the self-attention mechanism to fit the intensity
function of the Hawkes processes. This allows
the Exp-decay mixture to capture longer
historical information and is more interpretable
because the learned attention weight tensor
shows the contributions of each historical
event. It models the intensity function as the
exponential-decaying form like the classical
Exp-decay Hawkes Process and extends with a
nonlinear transform sofiplus stacked after. This
is also the cause of unmanageable computation
of the integral term when dealing with long data
sequences due to attention weights computation
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for each pair of events in the sequence under the
self-attention mechanism.

To solve the infeasible computation, the
final transformation of non-linearity is removed,
and the CIF of the defined Exp-decay distribution
can be obtained as follows:

Aep(t) =nexp(—B(t — t;-1)) + «
where the first term indicates the impacts of
historical events decay with an exponential ratio
added with the a, which is the basic intensity.

By using the distribution as a component,
the mixture of Exp-decay distribution reads the
PDF as follows:

S
fEDM(t) = Z Ws(rls exp(—BS(t - ti—l))
s=1

+ ocs) exp ((%
- 1) exp(—Bs(t — ti-1))

— ag(t - ti—l))

for t € [t;_1,t;), whose parameters are all
positive, calculated by x(h;).

3.2.4. Weibull mixture

Weibull Mixture assumes a population of two
or more subpopulations with different Weibull
distributions.** The Weibull distribution has the
advantage of high approximating ability due to
no numerical instability, so the parameter range
is not limited to a certain range. The parameters
of the Weibull mixture model can be estimated
using the maximum likelihood estimation (MLE)
or Bayesian methods. Its CIF reads:

s =Bt — i)

where 1,3 > 0. CIF will increase when 3 > 1,
decrease when < 1, and be constant when

B=1.
And its PDF represents:

S
fwem(t) = Z WNsBs (T]s(t
k=1

—-0))" " exp (—(ns(t

- ti—1)B))

3.2.5. Log-Cauchy mixture

Log-Cauchy Mixture is utilized because the
Log-Cuachy distribution can model a wide
range of data due to its flexibility by handling
both symmetric and asymmetric data and
super-heavy-tailed distributions with no given
mean or standard deviation.® The Log-Cauchy
distribution is also robust to outliers, which is
helpful in monitoring the business.** The Log-
Cauchy mixture with the PDF is written as:

o

fiem(@® = ; (t—t)n(n(t —t;) — w2+ o2

4. EXPERIMENTS

This section details the experimental setup,
including the datasets used, the procedure
followed, and the evaluation metrics employed
for next activity prediction and next timestamp
prediction tasks. This section also provides the
necessary context for interpreting the results.

4.1. Dataset

We evaluate two real-time event logs extracted
from the 47U Center for Research Data to
evaluate different combinations of history
encoders and conditional intensities: Helpdesk
and BP12012.2'%" Table 3 shows relevant statistics
from these logs, namely, the number of cases,
the number of different activities, the number of
events, the average and maximum case length,
the maximum and mean event duration in days,
the mean and maximum case duration in days
and the number of different variants.
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Table 3. Statistics of the event logs used for
benchmarking. Time-related measures are shown in

days.
Statistics Helpdesk®' BPI 2012%
Number of cases 4580 13087
Number of event types 14 36
Number of events 21348 262200
Mean case length 4.66 20.04
Maximum case length 15 175
Mean event duration 11.16 0.45
Maximum event 59.92 102.85
duration
Mean case duration 40.86 8.62
Maximum case 59.99 137.22
duration
Variants 266 4366

4.2. Procedure

Figure 1 shows the procedure of our framework
from preprocessing the data sets, data splitting,
and training the history encoder and CIF until
inferring the timestamps and activities. We
perform data splitting and evaluate all TPP
combinations in identical conditions to ensure
comparable results. The goal is to simulate a
scenario where past knowledge is utilized for
training a predictive model, which is then used
to predict the future. To achieve this, we perform
a 5-fold cross-validation, where every approach
is tested once per fold. The event log traces are
sorted by their initial event timestamp and split
into training, validation, and test sets with a
distribution of 64%, 16%, and 20%, respectively.
Timestamps and activities are extracted from
each fold data set and then encoded into history
embeddings /#; and sequence embeddings ¢; by
a chosen history encoder H. These embeddings
are modeled under a specific CIF f7(t) to extract
the time distribution and mark logit as the next
timestamp and activity predictions. Later, we
utilize the ground truth to compute the joint NLL
(Equation (3)) and optimize the parameters for
the embeddings, the encoder, and the CIF.

https://doi.org/10.52111/qnjs.2024.18501

4.3. Metrics

We use the following metrics to evaluate the TPP
combinations' performance on the next activity
prediction and next timestamp prediction
tasks, along with the goodness-of-fit by NLL
as Eq. (3). The results are reported as the mean
performance of each TPP combination on five
folds. Additionally, our evaluation appends a
dummy event as an (“/EOC]”) token to the end
of every log trace, which can reduce the process
state and provide a clear stopping point for
activity prediction.

4.3.1. Next activity prediction

We use the accuracy metric since the next
activity prediction task is a classic classification
problem. The accuracy measures the proportion
of correct classifications in relation to the number
of predictions done, which is implemented as
follows:

Top-q ACC({M, }1<isn, {Mi}1<isn)
|{ml- € Topg{logit(m)}: 1 <i < N}|
N
where logit(7,) € R is obtained by Eq. (2)

to measure the predicted discrete probability.
4.3.2. Next timestamp prediction

Since the time prediction problem is a regression
task, the metric chosen for measuring the TPP
performance in the next timestamp prediction
task is the Mean Absolute Error (MAE).
Instead of evaluating TPP performance based
on the normalized value taken directly from the
distribution under the Mean Absolute Percentage
Error (MAPE), we alter the normalization
step and postprocessing step to return the
next timestamp prediction in days to have a
fair comparison with our benchmarks. MAE
metric has the advantage of not over-penalizing
the variability in the observations, which is
important in the time prediction in predictive
process monitoring, where the time between two
events in a trace can be potentially large. The
MAE is defined as follows:
N i1~
MAE({a}lsisN: {tihi<isn) = W

where £, is the i-th predicted timestamp.

14 | Quy Nhon University Journal of Science, 2024, 18(5), 5-19



QUY NHON UNIVERSITY
JOURNAL OF

SCIENCE

Table 4. Experimental results of the next timestamp prediction MAE in days and the next activity accuracy of

modeling the overall CIF with different combinations of history encoder and family of distribution. The arrows

1/] indicate that the higher/lower results, the better. The metrics are computed as the mean of the 5-fold cross-

validation. The metrics in bold mean that the model achieves the top-5 performance in the column.

Helpdesk BPI 2012

Methods Top-1 Top-3 Top-1 Top-3

NLL | MAE | ACC 1 ACCH NLL | MAE | ACC 1 AcC
LogNormMix+RNN -2.046201 279.991608 0.695686 0.814908 -4.419353 19.107306 0.809411 0.934645
LogNormMix+GRU -2.049259 269.787903 0.696841 0.814715 -4.498922 19.963001 0.811243 0.935909
LogNormMix+LSTM -1.965748 265.744049 0.698613 0.814715 -4.805172 17.676338 0.810400 0.935561
LogNormMix+Attention -2.025522 243.183641 0.698927 0.814715 -4.970017 19.699347 0.804081 0.942155
LogNormMix+FNet -2.088489 354.522430 0.697804 0.814715 -3.997465 17.554281 0.700791 0.924937
GomptMix+RNN 0.862758 26.262592 0.694530 0.815293 -1.943585 3.082433 0.811463 0.935542
GomptMix+GRU 0.756814 36.176449 0.698190 0.814522 -1.989259 3.715980 0.814430 0.935689
GomptMix+LSTM 0.803448 33.733837 0.694915 0.814909 -1.718078 1.786893 0.811939 0.935103
GomptMix+Attention 0.198063 24.308924 0.798151 0.974923 -2.651078 2.053919 0.810492 0.936513
GomptMix+FNet 0.922608 26.557230 0.695300 0.812982 -1.338134 1.192549 0.658058 0.919295
LogCauMix+RNN -0.245449 24.777443 0.697612 0.815100 -2.425044 1.674708 0.809997 0.933234
LogCauMix+GRU -0.238866 25.448597 0.693374 0.812789 -2.447077 4.090276 0.809778 0.935616
LogCauMix+LSTM -0.213667 9.497505 0.697034 0.811633 -2.442514 2.642548 0.810345 0.935744
LogCauMix+Attention -0.572755 20.529713 0.697612 0.812982 -2.426620 1.027533 0.806151 0.928967
LogCauMix+FNet -0.229975 24.389563 0.698960 0.814137 -2.372896 2.651052 0.698978 0.924735
WeibMix+RNN -1.920710 354.471039 0.690100 0.814522 -4.106110 17.718061 0.807818 0.933308
WeibMix+GRU -1.807741 35.020641 0.689137 0.811633 -4.190582 14.316733 0.808514 0.933930
WeibMix+LSTM -1.856559 295.800934 0.686248 0.811633 -4.111487 15.760619 0.812818 0.935542
WeibMix+Attention -1.986018 123.920174 0.687982 0.812982 -4.050585 19.363649 0.796498 0.931842
WeibMix+FNet -1.750751 308.825226 0.683166 0.808166 -3.867040 19.018917 0.694252 0.923929
ExpDecayMix+RNN 1.778744 67.937225 0.696263 0.814908 1.221636 20.735715 0.811005 0.935011
ExpDecayMix+GRU 1.889372 117.146721 0.697612 0.815293 -1.230995 20.580959 0.814375 0.935689
ExpDecayMix+LSTM 1.963200 85.079498 0.696456 0.813367 -1.205069 20.735718 0.812086 0.935231
ExpDecayMix+Attention 1.447936 354.209351 0.696841 0.814522 -1.521961 20.748582 0.808111 0.934700
ExpDecayMix+FNet 1.800676 351.875275 0.697997 0.814522 -1.036910 20.735718 0.699857 0.924918

5. RESULTS

This section presents the findings from the
experiments, highlighting the performance of
different TPP models based on their combinations
of history sequence encoders and formulations
of conditional intensity functions. This section
summarizes the key observations and insights
gained from the experiments.

Table 4 evaluates different combinations
of history encoders and overall conditional

intensities on two real-world datasets, namely
Helpdesk and BP12012.

o Goodness-of-fit is typically evaluated
via the NLL result. The choice of history
encoders such as RNN-based, Attention-based,
and FNet-based methods usually does not affect
the overall performance of TPP models regarding
the goodness-of-fit. Meanwhile, the intensity
functions used for CIF approximation matter
most. ExpDecayMix shows the worst fitting
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ability. Besides, LogNormMix and WeibMix
usually fit the data best due to the ability to fit
the distribution via the NLL.

o Next timestamp prediction is evaluated
according to the MAE. The choice of intensity
function is also crucial, where LogCauMix and
GomptMix usually predict significantly better
than others. In the Helpdesk dataset, interestingly,
the LSTM with LogCauMix performs far better
than any other combinations of TPP models.

« Next activity prediction is evaluated via
the Top-1 ACC and Top-3 ACC. The results show
that the history encoder is critical because the
prediction depends on its encodings. Attention-
based encoders usually have good predictive
performance because they can capture long-term
features from historical events. Besides, GRU
and LSTM also achieve high results due to their
ability to capture long memory.

To sum up, the NLL and MAE calculated
by timestamps are predominantly influenced
by the formulation of intensity and short-term
influences, which the five history encoders
can adequately capture. Though FNet is a new
proposed approach and does not achieve high
results compared with other history encoders, it
still shows potential when pairing with suitable
intensity functions such as LogCauMix. All
history encoders can sufficiently model the
dynamics of arrival time, given their minor
Attention-based
encoders usually surpass other history encoders

differences. In  contrast,

to model the dynamics of the next activity due to
the capability of capturing the long-term impacts
of historical events.

6. DISCUSSION

In this section, we present our key findings which
are concluded from the experimental results, and
outline our future study.

6.1. Key findings

The experimental results presented in this study
provide valuable insights into the performance

https://doi.org/10.52111/qnjs.2024.18501

of different TPP models for predictive business
process monitoring tasks. The findings highlight
the importance of selecting an appropriate
combination of history sequence encoders
and CIFs to achieve optimal results. One key
observation is that the choice of CIF plays a
crucial role in the next timestamp prediction
task. The LogCauMix and GomptMix intensity
functions consistently outperform other options,
indicating their suitability for capturing the
temporal dynamics of business processes. This
suggests that the formulation of the intensity
function should be carefully considered when
designing TPP models for timestamp prediction.
Another notable finding is the impact of the
history encoder on the next activity prediction
task. Attention-based encoders, such as the
self-attention mechanism, demonstrate superior
performance compared to other encoders. This
can be attributed to their ability to capture long-
term dependencies and selectively focus on
relevant historical events. The results underscore
the importance of leveraging attention
mechanisms to effectively model the complex
relationships between past activities and future
predictions. The experiments also reveal that
the FNet encoder, despite being a relatively new
approach, shows potential when paired with
suitable intensity functions like LogCauMix.
While its performance may not surpass other
established encoders, the FNet's ability to
capture temporal patterns efficiently makes
it a promising direction for future research in
TPP models for business process monitoring.
Conclusively, the performance of TPP models
can vary depending on the characteristics of
the dataset and the specific business process
being monitored. The Helpdesk and BPI 2012
datasets used in this study represent real-world
scenarios, but the generalizability of the findings
to other domains and processes should be further
investigated. Future research could explore the
application of TPP models to a wider range of
business processes and datasets to validate the
robustness of the observed trends.
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6.2. Future study on explainability

Another important aspect to consider when
applying TPP models in predictive business
process monitoring is explainability.® As
businesses increasingly rely on automated
decision-making systems, the ability to interpret
and understand the predictions made by these
models becomes crucial. Explainability helps
to build trust in the model's outputs, facilitates
debugging and error analysis, and enables
stakeholders to gain insights into the factors
influencing the predictions.** However, it is
important to note that achieving explainability
in TPP models is not without challenges.
The complexity of the models, the high-
dimensional nature of the input data, and the
temporal dependencies can make it difficult
to provide simple and intuitive explanations.
Striking a balance between model performance
and interpretability is an ongoing research
challenge. Future work in this area could focus
on developing novel explainability techniques
tailored to TPP models, as well as conducting
user studies to assess the effectiveness and
usability of these explanations in real-world
business settings.

7. CONCLUSION

In this paper, we evaluate the performance of
different TPP models via their combinations of
the history sequence encoder and formulation
of CIF on the predictive business process
monitoring data sets. The results show that the
formulation of intensity influences the next
timestamp prediction and can be captured by any
of'the history encoders. The next event prediction
is dominated by the ability to capture long-
term impacts from historical events, especially
attention-based encoders. In our future work,
we plan to conduct a more profound experiment
around several aspects of TPP models, such
as loss computation, history embedding's
normalization, the relational discovery of events,
and optimizations. In our future work, we extend
the capability of TPP models on other prediction

problems such as activity suffix and remaining
time prediction, and continue research on
explainability to bridge the gap between model
performance and interpretability, ultimately
leading to more effective and user-friendly
monitoring systems.
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