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TOM TAT

Cho v, u 1a céc trong chuan tic trén hinh cau don vi Bx clia mot khong gian Hilbert phiic
v6i sO chiéu tly ¥ va ¢ 1a mot ham chinh hinh trén By, ¢ 14 mot anh xa tuy chinh hinh cta
Bx. Trong bai bao nay, chiing t6i nghién cttu cac dac trung cho tinh bi chan va tinh compact
clia toan tit hop ¢6 trong Wy, f +— - (f o ), tit khong gian kiéu Bloch B, (Bx) dén khong
glan tang trudng (nho) 5 (Bx), HY(Bx) thong qua tinh chat ctia 1, cdc phiém ham dénh gia
diém (552’2()3 X ), va, cac han ché clia cac dai lugng nay lén cac khong gian con m-chiéu véi m > 2.

Ching t6i cling tinh dude chinh xéc cong thic clia chuan toan ti Wi -

Tw khéa: Todan ti hop co trong, khong gian Bloch, khong gian tdang trudng, tinh bj chdn, tinh
compact.
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ABSTRACT

Let v, u be normal weights on the unit ball Bx of an Hilbert space X with arbitrary dimension
and 1 be a holomorphic function on Bx and ¢ a holomorphic self-map of Bx. In this work,
we characterize the boundedness and the compactness of weighted composition operators Wy, .,
f = - (f o), from the Bloch-type spaces B,(Bx) to the (little) growth spaces H;°(Bx),
Hg(BX) via function theoretic properties of the symbol % and the point evaluation function

Bu(Bx)
O0(z)

, specifically, of the restrictions of functions v, ¢ to the m-dimensional subspaces for

some m > 2. We obtain also the formula of the operator norm of Wy, .

Keywords: Bloch spaces, growth spaces, compactness, boundedness, weighted composition oper-

ator
1. INTRODUCTION

Let &1, & be spaces of holomorphic functions
on the unit ball Bx of a Banach space X, ¢
be a holomorphic function on Bx and ¢ a
holomorphic self-map of Bx. The weighted
composition operator, defined by symbols 1)
and ¢, maps from & to & and is defined by

Wyo(f) = MyCy(f) =4 - (f o)

where My, represents the multiplication oper-
ator with symbol ¢ and C,, is the composition
operator with symbol .

In recent years, there has been significant
interest in studying weighted composition op-
erators. A famous theorem developed by Ba-
nach asserts that for a compact metric space
K, the surjective linear isometries of C(K)
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are given by T'f = u(f o ) where |u(z)| =1
for all x € K, and ¢ : K — K is a homeo-
morphism. Inspired by this theorem, ongoing
research on the characterization of isometries
in Banach spaces of analytic functions has re-
vealed that weighted composition operators
define the isometries of many such spaces, in-
cluding the Hardy space H? (for 1 < p < oo,
p # 2), the weighted Bergman space, and the
disk algebra.’

For a comprehensive overview of various
aspects of the theory of (weighted) compo-
sition operators acting on several spaces of
holomorphic functions, we refer to a standard

reference. 2

There is extensive literature on weighted
composition operators and integral opera-
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tors between specific holomorphic function
spaces. To address these spaces in a unified
way, certain frameworks for Banach spaces of
holomorphic functions on the unit disk have
been introduced.?4

For instance, in reference, 3 established
certain topological and function-theoretic
conditions for the domain space and provided
criteria for boundedness and compactness,
along with estimates for the operator norm
and the essential norm of the weighted com-
position operators that map to the weighted-
type space or the Bloch-type space on the unit
disk. In recent years, there has been significant
interest in the study of weighted composi-
tion operators. More recently, attention has
also focused on composition operators and
operator-valued multipliers in various vector-
valued analytic function spaces, particularly
when X is an infinite-dimensional Hilbert
space.” 10

In this paper, we aim to consider the
compactness and boundedness of W, , when
&1 is a general Banach space of holomorphic
functions and and & is either growth space
H°(Bx) or the little growth space H{)(Bx)
determined as follows:

H,  (Bx)

—{feA(Bx): swp u=)|f()] <o},

zEBx
M, (Bx)

={renzmy): lm p)If) =0},

l[=l—1

where 7 (Bx) is the space of holomor-
phic functions on Bx and p is a normal
weight on Byx.

Growth spaces are a significant and in-
triguing class of Banach spaces of holomor-
phic functions. They have been investigated
in various contexts, with numerous general

and specialized references available.!?13

Some key properties of these spaces, when
Bx is the unit disk B C C, include the fol-
lowing:

® For a normal weight p, H7°(B) D H™
if and only if lim|,_,; () = 0. On the
other hand, if limsup,|_,; u(z) > 0,
then Hf, = {0};

® The identity map I HP(B) —
(H;X (B), 7eo) is continuous.

® The bidual [H},(B)]" isometrically iso-
morphic to H;° (B);

®* The point evaluation functionals §7¢
on 7—[2(18%) are bounded and can be
uniquely extended to point evaluation
functionals on H;°(B) with the same
nOorms;

® The operator BY)(B) — H°(B), f
f", is an isometric isomorphism, where
82 (B) is the subspace of the Bloch
space B, (B) of functions with f(0) = 0.
It is important to note that the Bloch
space consists of functions character-
ized by the growth of their derivatives,
making it closely related to growth
spaces;

® The maps z ~ J. is continuous, and
|67¢]| goes to infinity as |z| — 1.

These are just a few of the reasons moti-
vating our research.

In Section 2, we review the key condi-
tions for spaces of holomorphic functions that
will be used to establish the boundedness and
compactness of these operators, as well as to
provide estimates for their essential norms in
our context.

To characterize the boundedness and
compactness, and building on the ideas from
59 with minor modifications, we establish
in Section 3 a connection between func-
tions in the growth space H;° (Bx) and
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their restrictions to finite-dimensional sub-
spaces. Specifically, we show that if the re-
strictions of a function to m-dimensional sub-
spaces (for m > 2) have uniformly bounded
growth norms, then the function belongs to

the growth space Hfﬁ(]B%m), and vice versa.

In Section 4, we characterize the bound-
edness and the compactness of Wy, , from
B,(Bx) into H°(Bx) and into H{(Bx) as
well as calculate the operator norms. We
will show that these characterizations are
completely determined by their behaviour
on z/zm] and on the point evaluation func-

tions 56[1;,15)()) and 552’(?(’2{)), where ™ and

@™ are the restrictions of ¢ and ¢, respec-
tively, on the m-dimensional subspaces and

P(m) = (9017-~-790m); m > 2.

Throughout this paper, we use the no-
tions a < b and a < b for non negative quan-
tities a and b to mean a < Cb and, respec-
tively, C~'b < a < Cb for some inessential
constant C' > 0.

2. PRELIMINARIES AND AUXIL-
IARY RESULTS

Let X be a complex Hilbert space of arbitrary
dimension, Y a Banach space. Denote by Bx
the closed unit ball of X, and use B,, instead
of Ben. Fix an orthonormal basis (eg)ger of
X. Then any z € X can be expressed as

z:g 2LCE, E:E ZE€k-

kel kel
2.1. Mobius transformations

The analogues of Mobius transformations on
a Hilbert space X are the mappings @, :
Bx — Bx, a € By, defined as follows:

a— P,(2) — 5,Qq(z
D,(2) = 1(—)<z 2 ( ), z € Bx
(2.1)
where s, = /1 — ||a]]?, Pu(2) = |<|3|‘|’2>a, and

Qa(2) =2 —
We define ®g(z) = —z.

ﬁ#’@a for z € By.

https://doi.org/10.52111/qnjs.2025.19104

Denote by Aut(Bx) the group of auto-
morphisms of the unit ball Bx.

For details on Mobius transformations,
we refer to K. Zhu’s book.

2.2. Banach spaces of holomorphic
functions

A (Bx,Y) is denoted by the vector space
of Y-valued holomorphic functions on By.
An element f € J#(Bx,Y) is named locally
bounded holomorphic on By if for every
z € Bx there exists a neighbourhood U, of
0 € X such that f(U.) is bounded. Put

<}fiB(‘BXW Y)

={f € #(Bx,Y): [ is locally bounded on By }.

For f € J7(Byx), its complex gradient and
radial derivative are defined by

V() = (52( 9),

Rf(2) Z o ) (zker)

kel

= (2, Vf(2)),

respectively. Thus, V f(z) is the unique ele-
ment in X representing the linear operator
f'(z) € X', hence,

)—Za )(zrer)

kel
=(x,Vf(z)), xe€X.
It is clear that
(Rf(2)| < [IVf(2)llz], =€ Bx.

Now, let £ C 7 (Bx) be a Banach space.

For each z € By, the point-evaluation
functional 6¢ at z defined by 6(f) := f(z)
for all f € &.

Thus,
£ < IAINISE N,

where [[65]| = sup{|f(2)| : f € &, [|If] < 1}.
For all ® = (®;)er € Aut(Bx), for every
j>1,m>2andall f €&, wewrite

Dy = (Pry. e, D),

fe& zeBx, (22
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[ @y =P, f D).
Below, we present a comprehensive list of
conditions, some of which will be necessary
for characterizing the boundedness, compact-
ness, or determining the essential norm of the
operators discussed in this work.

(el) & includes the constant functions.
(e2) The closed unit ball Bg is 7.,- compact.

(e3) There are m > 2 and constant C' > 0
such that for all & € Aut(Bx), for all
feé& @ -fek,

15 - fIl < ClUFlL 5 €L, m).

Remark 2.1. It follows from (el) that
inf,ep, [|05]| > 0, and in particular, the fol-
lowing equivalent conditions are satisfied:

(ela) On each compact set, ||6¢]| is bounded
from below by a positive constant;

(elb) The functions in £ do not all vanish at
each point z € By.

Indeed, since the function 1 € &, for every
z € Bx we have [|0¢] > ﬁ It is obvious that
(ela) = (elb). Now, assume that (elb) holds
but (ela) fails. Then we can find a compact
subset K of Bx and a sequence {z,},>1 € K
and 29 € K such that z, — 2o and ||6¢ || — 0.
This implies that f(z9) = 0 for all f € €&,

which is incompatible with (elb).

By the uniform boundedness principle,
we can easily prove the following:

Proposition 2.1. The mapping 6¢ : By —
C, z + [|6¢]|, is bounded on compact subsets
of By for every Banach space £ of holomor-
phic functions on By.

3. GROWTH SPACES AND BLOCH-
TYPE SPACES

For a normal weight v on Bx, we write

. HZH&
I,(%) .—/0 Ok

Remark 3.1. Since v is positive, continuous,
my,s = mingep 5 v(t) > 0. Moreover, it fol-
lows from (W7) that v is strictly decreasing
on [4,1), hence, max,c(o,1) v(t) =: M, < oc.
Then, it is easily seen that

v(2)I1(z) < R, = 524” +1-60 <o0. (3.1)
v,0

for every z € By.

We define bounded holomorphic spaces
H>(Bx),
HP(Bx), little growth holomorphic spaces
Hg(BX), Bloch-type spaces B, (Bx), and lit-
tle Bloch-type spaces B, o(Bx) on the unit

growth  holomorphic  spaces

ball By as follows:
H>®(By) = {f e #(By) :
sup |f(2)| < oo},

z€Bx

H2(Bx) = {f € #(Bx) ;

sup p(S ()] < oo,

Ho(Bx) = { f € H2(Bx)
lim pu(2)|f(2)] = 0},

l[2]|—1
B,(Bx) i= {f € #(Bx) : | fllm,mx) =
sup v(z)|Rf(z)| < oo}.
2€Bx
It is easy to check that H*(Bx),

H;*(Bx) and B, (Bx) are Banach under fol-

lowing norms

7l = sup 172,
z2€EBx

1fll#ze := sup u(z)|f(2)],
z€EBx

1f 18, (Bx) = IF O]+ 1fls8, (Bx)»

respectively.
Now we consider the holomorphic func-
tion

g(z):=1+ Z ok 2 e By, (3.2)
k>ko

https://doi.org/10.52111/qnjs.2025.19104
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[1jf ] with
k
re = v1(1/2F) for every k > 1. Here, the

symbol [z] represents the greatest integer less

where ky = [log2 ﬁ], nE =

than or equal to x. By Theorem 2.3, 1° ¢(t)
is increasing on [0, 1) and

l9(2)] < g(ll=]]) € R,
0<Cy:= tel[I&fU v(t)g(t)

z € By,

< Sup v(t)g(t) (3.3)

< sup v(z)|g(z)| =: Co < 0.
z€By

Lemma 3.1. Let v be a normal weight on
Bx. Then there is C' > 0 such that for every
z € By,
1F(2)] < 1) fllagey)s £ € H (Bx),
(3.4)
[f(2)] < CA+L ()N, (Bx)s | € Bu(Bx).
(3.5)

Proof. The inequality (3.4) is obvious. The
inequality (3.5) was proved in (Proof of The-
orem 3.2) Y. O

Lemma 3.2. For every v normal weight v
on By, we have

H (B
(1) 62 P) = 1/u(2);
2) (165 < 1 4 1L (2).

Proof. (1) It is obvious.
(2) It follows easily from the definition of
557 Bx%) and (3.5) that

167 B) S 1+ I (2).

Now we consider the function fy defined by

[zl
folz) = (14Co) (14 /0 g(t)dt), = € By,

where ¢ is defined by (3.2). It is clear that
fo € B,(Bx) and by (3.3), it is easy to see
that [ foll,(Bx) < 1. Then, in view of (3.3)
again, this yields that

162 > | fo(2))
1 (@5
1+Cy 1+ Cy

b+ =),
O

> max{

https://doi.org/10.52111/qnjs.2025.19104

It is easy to prove the following:

Corollary 3.3.  H°(Bx), B,(Bx) satisfy
the properties (el), (e2), (e3).

We will demonstrate below that the anal-
ysis of growth spaces on Bx can be re-
duced to studying functions defined on finite-
dimensional subspaces. It is worth noting
that similar results for Bloch-type spaces
were recently studied in ?

For each finite subset F' C I, without
loss of generality we may assume that ' =
{1,...,m}, we denote by B,, the unit ball of
span{ey, k € F'}. For each m € N, we write

= M‘span{m ..... em}?

Z[m] = (21, R ,Zm) €B,,
For m > 2, we denote by

OSy, i={z = (z1,...,2m),
T € X, <$k,LL‘j> = 5@'}
the family of orthonormal systems of order

m.

For every z € OS5, fixed and f €

A (Bx), we define

Z[m] ( Z Zkl/‘k) .

k=1
Then
fosetun] = [7s (L)) 00
k=1
Definition 3.1. We denote

?{uaﬂ(lix)

={r e A(Bx): fllaz, 8x) <0}

where

sup £ e )

1 1o o (Bx) = Sup

with f(-z) : By — C given by f(-z)(\) =
f(Az) for every A € By, and

17 C2)llpze o) = sup p(Az)|f )]
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It is easy to verify that ||- HHZ"aH(Bx) is a norm
on Hp° (B

over, (Hg (Bx), [| - 70
space.

x ), called the affine norm, more-
oo o (Bx)) is a Banach

Proposition 3.4. Let f € J#(Bx). The fol-
lowing are equivalent:

(1) feHr(Bx);

(2) sup,eos,, HfacHHm[m](Bm) < oo for every
n
m > 2;

(3) suP,eos,, ||fz||H g (Br) < 00 for some

m > 2.

Moreover, for each m > 2

1 340 (Bx) = sup foHHsz](Bm)- (3.7)

ze
(2): Let m > 2 and zpy,) =
. Since Hzgnzl ziej|| =

Proof. (1) =
(Zla"'azm) € ]Bm
|2 [ e get

foHH 1 (Bx)
= sup p™ ()| fo (2im))|
Z[m]EBm (38)
< ap (50
z€Bx jeF
<

1f 13452 (Bx) < 00-

In particular, we obtain (2).
(2) = (3): This is evident.
(3) = (1): Assume that

sup el
x€0Sm

for some m > 2. We fix z € By \ {0}.
. Ty) € OS,, and
O) € C™. Then ||Z[m]|| =

)<OO

Consider x = (ﬁ,zg,
Z[m] = (”ZH,O,...,
||z|| and

[ (o)) = )f(lizkxk)] = |f(2)]-

This yields that

1fllaze (Bx) = sup u(2)|f(2)]
ZEBX
< Sup 1™ )| o (2| (3.9)
< sup 1fzllrecs,,) @) < 00-
€08

Thus f € H*(Bx).
On the other hand, it is clear that

sup Hsz"H
z€0Sm

o B) < e (x)
for every m > 2. (3.10)

Hence, we obtain (3.7) from (3.8), (3.9) and
(3.10). O

Remark 3.2. In the case m = 1, the propo-
sition is not true. Indeed, we consider p(z) :=
1 —|z||?, and f : Bx — C given by

f(z):= i <% — %,en>, z € By.

n=1

Then f € J#(Bx) because
o0
ZK@ _ 2. >
- n
—l\n Vvn
— 1 — 2
SZﬁJerHQJrZ—nm < 0.
n=1 =

For each = "7 | (z,e,)e, € OS; and for
every zjy) := 2z € By for some k > 1, we have

2

_ l 2T
f(zpay) = P

and thus, since |fx(zp))| < 2, we get

fe(zp)) =

sup || fz |l (81
€085

= sup (1= [z )1 fz(z)] < 2.
z€0S81

However, since

(1-1I=l%)f ()]
= (=) Y (- e,
— Z% as z — 0,
n=1

we obtain that f ¢ H;°(Bx).

By employing a similar argument as in
the proof of Proposition 2.3 in,? we can eas-
ily obtain the following result, for which the
proof will be omitted.
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Proposition 3.5. H;*(Bx) = H q(Bx).

Moreover,
[ llree (Bx) < N Fllree o (Bx)
Sl yy, € HE (Bx).

4. BOUNDEDNESS AND
PACTNESS CRITERIA

COM-

Consider the weighted composition operator
Wy o from B,(Bx) into H;°(Bx) and into
’Hg(BX) defined by

(Wyof)(2) == 4(2) - (fop)(2), 2z € Bx.

The component operators are the multi-
plication operator My f = v - f and the com-
position operator Cy,f = f o ¢, which cor-
respond to the cases when the composition
symbol ¢ is the identity function on B and
the multiplication symbol v is the constant
function 1, respectively.

Theorem 4.1. The following are equivalent:

(1) Wy, By(Bx) — H;°(Bx) is bounded;

m B, (B
(2) M]" = sup a2yl I Extrl
< oo for some m > 2;

(3) Mw,%u

By
= sup u(2)[(2)]105|| < oo,
zEBx

In this case, we have
HW%@H = My o (4.1)
Proof. (3) = (2): It is clear.

(1) = (3): Suppose Wy, : B,(Bx) —
H7°(Bx) is bounded. Fix z € Bx. For each
f € B,(Bx) with | fl5,(5x) < 1, we have

p(2)P ()] < Wy o fllage )

By definition of §3(Bx) (see Proposition 2.1),
by taking the supremum over all f within the
closed unit ball of B,(By ), we obtain:

B (
u() () 185 < Wy .

https://doi.org/10.52111/qnjs.2025.19104

Taking the supremum over all z € By yields

My pu < Wy ol < oo. (4.2)

(2) = (1): Assume Mgﬂ,u < oo for some
m > 2. Let f € B,(Bx) with || f[|5,(By) < 1.
We write z, := > " | zxzy for each x € OS,,.
It should be noted that ||z;| = |2yl and

hence ,u,[m](z[m}) = pl™(2,). Then

Wy (Fellress,,, @)
= sup pl"(z W J(z2)(f © @) (zm))]

2z €EBm

[m]
<Mwwu<oo

for every € OS,,. By (3.7), Wy, is

bounded because

[We o (Nl (Bx)
= sup H(ngp( )l 2 il (Bm)

ze0S

[m }
< Mw,wt < 00.
(4) = (2): For z € Bx, we have

(2 ()] < p2) () 1557

S vaﬁavﬂ < 00.

Consequently,
HWw,sofHH;;O(BX) <My, <oo.  (4.3)
Finally, from (4.2), (4.3) we deduce (4.1). O

We next characterize the compactness of

10

Wy.p. As shown in *¥, we can demonstrate

the following:

Lemma 4.2 (!°, Lemma 2.10). Let £, F be
two Banach spaces of holomorphic functions
on Bx. Assume that

(1) ¢ are continuous for every z € By;
(2) The closed unit ball of £ is 7.,-compact.

(3) T:(E,7e0) —

(F,Teo) is continuous.
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Then, T is compact if and only if for each
bounded sequence { f,} in & satisfying f, =
0 on compact sets, then || T f,||z — 0.

Theorem 4.3. Assume that the operator
Wy + Bu(Bx) — H; (Bx) is bounded.
Then, the following are equivalent:

(1) There exists m > 2 such that

w2 ()16 2)| = o,

lim sup Pomy (2)

"l (2)I1>7
(4.4)

where @) = (01, Pm)-

(2) Wy, is compact.

Proof. First, we show that ¢ € H°(Bx). In-
deed, by the boundedness of Wy, , and Theo-
rem 4.1, we have My, , , < oco. Then, by Re-

B”(BX)H =: o > 0. Con-

mark 2.1, inf,ep, ||5¢(z)

sequently,

ap(z)[P(z)] < My ,u, 2 € Bx.

This means ¢ € H;°(Bx).

(2) = (1): Suppose Wy, : B,(Bx) —
HiY (Bx) is compact. Fix m > 2. It is obvious
that (4.4) holds if ¢, (Bx) is relatively com-
pact in By. So assume ¢(,,,y(Bx)N9Bx # 2.
Then we can find sequence {z"},>1 C Bx

such that [[¢(,)(z")|| — 1. By the defini-
B.(Bx)
gp(,m)(z”)
can find a sequence {fy,}n,>1 C B, (Bx) with

tion of § , with ¢ > 0 is given we

| fullB, (Bx) < 1 for every n > 1 satisfying

n B.(B
Fulam N> 16T =2 (45)
By the condition (e2), without loss of gener-
ality, we may assume that f, = 0in B, (Bx)
on compact subsets of Bx and { f;, },,>1 is uni-
formly bounded on compact sets.

For each n > 1, denote a" := ¢(2") and
consider the automorphism ®,» € Aut(By)
defined by (2.1). For each j € {1,...,m}, put

Ganj = (a(p))j * frn = (Pan) (m));j * f-

By (e3), Gan j € B, (Bx). It is an easy calcu-
lation to show that for every w € By,

|Gan j(w)| = [(ain))j - fu(w) = (Ran) m) ()

Wl )
— | (w)].

<
1wl
Then, by (2.2),
3/1 = llaf,,II?

(m)

G i(w)| < ——7-—"—
| 7]( )| 1_||w||

16,
consequently, by Proposition 2.1, and since
||a?m)|\ = [lom)(2")[] = 1 asn — oo, for each
Jj€{l,...,m}, Ggnj = 0 on compact sub-
sets of Bx Now by the condition (e3), there
exists C' > 0 such that for all j € {1,...,m},
we have

Gan

B, (Bx)
< lafmy ll falls, Bx) + 1((Ran)m))j - fulls, (Bx)
<@+ D fallg,Bx) <C+1 ¥Yn>1.

Therefore, since Wy, , is compact, By (2.2)
and Lemma 4.2, [ ((Gan )09 1 (5) — 0
asn — oo for every j € {1,...,m}. Note that
®4n(a™) = 0. Therefore, by (4.5), we have

n n n B.(B
(N oy IS EE | — €)

< (") [Py (2 fn(fm) ()]

(") (") ZI(Gaw)(sO(m)(Z"))P

= | 2ol (Garg) 0 Dre

j=1
—0 asn— oco.

Consequently,

. n n B.(B

< tim () 0(=")] < ell$ )

This implies that (4.4) holds because ¢ is ar-
bitrary.
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(1) = (2): Assume that (4.4) holds
for some m > 2. By Lemma 4.2, it suf-
fices to prove that if {f,}n>1 C B.(Bx),
Ifullg,(Bxy < 1 for all n > 1 and
fn = 0 on compact subsets of Bx then
”WT/AWfTLHHEO(Bx) — 0 as n — oo.

Let {fn}n>1 be such a sequence. Given
¢ > 0. Then we can choose a number r €
(0,1) such that u(z)|1/)(z)|\|6¢(m) < e
(z)|| > . Since |fn( )| <
80 PX) for all w € By, if [ (2)] >
r, then u(2)[Y(2)||fu(@@m)(2)] < e. Thus

p(2) [P (2)[[ fn(pm) (2)] < & when [p(2)]| > 7,
because [¢(2)]| > [[o@m)(2)|| > r for every

z € By.

whenever [|¢(,,)

Now, we consider the case ||p(2)| < 7.
Then [[¢,)(2)[] < . Note that

B[‘P(m)ar]
= {em) ®) : lleam
C B, C (Cm

W)l <7,y € Bx}

is relatively compact for every 0 < r < 1,
by the hypothesis, f, — 0 uniformly on
Bl¢(m),7]- Then, there exists N € N such
that |fn(w)| < 5/||¢”Hﬁ°(3x) for all n > N,

w € Bl@(my,r]. Thus,

w2 falom) ()] < e if lo(z)]| <7
0

We will now examine the boundedness
and compactness of the operator Wy, , map-
ping into H},(Bx).

Theorem 4.4. The following are equivalent:

(1) ¢ € H)(Bx), and there is m > 2, such
that orevery 0 <r <1,k >1:

¢ (m)(rBx) is relatively compact; (4.6)

Jim w0 =0 (4)

(2) ng : B, (Bx) — Hg(BX) is compact.

https://doi.org/10.52111/qnjs.2025.19104

Proof. (1) = (2): Suppose (1) holds. Fix
f € B,(Bx). We show that Wy, ,f = - (fo
) € Hex (Bx). Since u(=)|(2)|f(p(py () —
w(z)|w(z)|f(e(z)) as k — oo for each z € By,
and Hg(BX) is closed in H;°(Bx), it suffices
to show that ¢-(fop) € Hg(BX) for every
k > 1. Given k£ > 1. By the hypothesis (1),
for given € > 0 there is r € (0, 1) such that

W)W f (e ()]
< w(@) @0 T N5, () (4:8)

P (
<ellflls,(Byx) for [lz]| >

On the other hand, assumption (1) implies
that

sup|z) <r(2) [P ()| f (P (k) (2))]
< )|z >|H55f<”kf:§ 1 £115, () < oo-
(4.9)
Consequently, ¢-(fopq,)) € H;°(Bx). More-
over, by (4.8), ¢ - (f o o)) € H)(Bx).

We also obtain from (4.8) and (4.9) that
WWD is bounded.

The compactness of the operator Wg’@
can now be established by following a sim-
ilar argument as in the proof of Theorem 4.3
and using condition (4.6).

(2) = (1): First, since Wvg,ga is bounded
and 1 € B,(Bx) it is easy to check that
¥ € H)(Bx).

In order to prove (4.6), first we have to
show the following claim:

(BX)—(SZ;EO(BX)H, 2w € By.
(4.10)

Indeed, by direct calculation, it is easy to

check that

1 H®
Sll—wll < 62

1
Sz —wl
(1= [=P)(1 = [[w]?)
: %‘ 1= (2, 0}
= ox(z,w),

where ox is the pseudohyperbolic metric in
Bx (see 1 p.99). On the other hand, we also
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have

ex(zw) = sup  o(f(2), f(w))
feM>=(Bx)

[flloe<1

(see (3.4) in °), where o(z,y) = ‘196—_%| is
the pseudohyperbolic metric in B;. Note that,

since the function n — W

phic from B; into By and f(z) — f(w) — 0,
it follows from Schwarz’s lemma that

is holomor-

QX(Z’U))
< sup |f(2) = fw)]
fEHOO(Bx)
[l fllec<1
< sup Iy o g
fEH>®(Bx)
[Ifllco<1

Hence, (4.10) is proved.

Next, we prove (4.6). For r € (0,1),
the set V, = {00 P 1l < ) c
(Hy*(Bx))" is bounded. Then, since Wy, is
compact, the set

(W) (V) = {200 s 12l < v}

is relatively compact in [B,(Bx)]'.

We know that, for every K C [B,(Bx)]
and every bounded subset D C C, if the set
{tn : t € D,n € A} is relatively compact
in B,(Bx) then A C [B,(Bx)] is also rela-
tively compact. With this in mind, since the
set {¢(z) : ||z]] < r} is bounded, the set
{55” BxX) 2| < r} ois relatively compact.
Then, it follows from (4.10) that ¢(rBx)
is relatively compact, so is @y, (rBx) for
m > 2.

Finally, we prove (4.7). Assume that
there exist m > 1, o > 0 and
{z"}n>1 C Bx, ||z"]] — 1 such that
WD 50| > 0 for all n >
1. Then, we may choose {fp}n>1 C
B,(Bx) such that | fulls,(8y) < 1 and
[Fulum )| > 165011 = 0/2 for every
n > 1. Thus

p(z") ) (P (2))]
> 0= 0/2u(z") | (Z")].

Therefore, since ¢ € H}(Bx), qu#jfn ¢
HS(B x). This contradicts the boundedness
of ng‘p. O

Remark 4.1. In the case where dim X < oo,
and by following the proof of Theorem 4.4,
the following statements are equivalent:

. By (B
) lim () (@I105:5031| = 0 for every

l[z[—=1

k>1and ¢ € H°(Bx);
(2) ng,so : B,(Bx) — MY(Bx) is compact;

(3) qu’cp : B,(Bx) — Hg(BX) is bounded.
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