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ABSTRACT

In this paper, we propose and study a class of generalized convex functions, which are defined

according to a pair of quasi-arithmetic means and called (Mg, My, )-convex functions, and establish various

Fejér type inequalities for such a function class. These inequalities not merely provide a natural and intrinsic

characterization of the (Mg, My )-convex functions, but actually offer a generalization and refinement of
some Hermite-Hadamard and Fejér type inequalities obtained in earlier studies for different kinds of strong

convexity.

Keywords: Strongly (Mg, My,)-convex functions, quasi-arithmetic mean, convezity, Hermite-Hadamard

inequality, Fejér inequality.

1. INTRODUCTION

In the field of mathematical inequalities, the well-
known Hermite-Hadamard inequality for convex
functions was first discovered by Hermite! in 1883
and independently discovered 10 years later by
Hadamard.? This inequality says that if f : [a, b] —
R is a convex function then

A weighted generalization of Hermite-Hadamard in-

equality was developed by Fejér:® If £ : [a,b] — R is
a convex function, g : [a, b] — [0, 00) is an integrable
function with f: g(x)dz > 0 and it is symmetric to

£ e, g(z) =gla+b—x) for all z € [a,b], then

a+b\ _ [ f@g@)de _ fla)+ f(b)
f( 2 )S f:g(m)dr : 2

Since then, the inequalities (1) and (2) have been

)

generalized, extended and improved in various ways
and found interesting applications to convex analy-
sis, optimization theory and nonlinear analysis. One
of such ways is to establish new inequalities for
various generalized convex functions (see e.g.,* 7).
Among them, an important subclass of convex func-
tions in the optimization theory is strongly convex
functions. This class was developed by Polyak® in
1966 for dealing with some related issues arisen from
optimization theory.

*Corresponding author.
Email: nnhue@ttn.edu.vn
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Let ¢ be a positive number. A function f :
[a,b] — R is called strongly convex with modulus
cif

fltz+(1=t)y) < tf(@)+(1-1)f(y)—ct(1-t)(z—y)*

for all z,y € [a,b]. One says that f is strongly mid-
convex with modulus ¢ if

f (:z:;ry) < f(-'l/');f(y) -

for all z,y € [a,b)].

In 2010, Merentes and Nikodem? established a
generalized version of Hermite-Hadamard inequal-
ity for strongly convex functions as follows: Let
f i Ja,b] = R be a strongly convex function with
modulus ¢. Then, the following inequality holds

b
fla)+f(b) ¢ :
< 5 —E(b—a)z.

(4)

In 2012, Azocar!® et al. proposed a Fejér type
inequality for strongly convex functions: Let f :
[a,b] = R be a strongly convex function with modu-
lus cand g : [a,b] — [0, 00) be an integrable function
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. b _ . +b
with [ g(x)dz =1 and symmetric to “5*. Then,

() [ e (252

b
< [ f@gtwyis (5)
. f(a);f(b) . [aZ;bQ B /” 2 g(x)dx] |

In recent years, some generalizations of inequal-
ity (5) have been established for strongly log-
convex functions and strongly harmonic convex
functions. 12 Motivated by the achievements, we
continue the research direction. Our contributions
in this paper are that we first deeply investigate
the class of generalized strongly convex functions re-
garding to a pair of quasi-arithmetic means and then
derive some new Fejér-type inequalities. The derived
inequalities are not only characterizations for gen-
eralized strongly convex continuous functions, but
they also generalize inequalities that were recently
derived in the papers. 112

The rest of this paper is organized as follows. In
Section 2, we will introduce (Mg, My, )-convex func-
tions, strongly (Mg, My )-convex functions with
positive modulus and refer related particular cases.
The main results of this paper will be presented in
Section 3. Finally, the paper closes with the conclu-
sions in Section 4.

2. STRONGLY (M, My) - CONVEX FUNC-
TIONS

Let I and J be the intervals of real num-
bers. Let ¢ I — R and o J — R be
continuous and strictly monotone functions. Using
a pair of quasi-arithmetic means M, and My,
with My(a,b;a) = ¢! (ad(a) + (1 — a)¢p(b)) Au-
mann '3 proposed the concept of (Mg, My )-convex
functions that is stated as follows.

Definition 1. '3 A function f : I — .J is said to be
(Mg, My)-convex if

fMg(a, b)) < My(f(a), f(b);e)  (6)
for all a,b € I and a € [0,1].

In the case that f fulfills the inequality (6) with
o(x) = x, f is called My -convex. If f satisfies the
inequality (6) with ¢(z) = z and ¥(xz) = z, then
the (Mg, My )-convexity of f reduces to the usual
convexity in the literature of convex analysis.

For a pair of quasi-arithmetic means My and
My, we define a class of generalized strongly con-
vex functions as follows.

Definition 2. Let ¢ be a positive number. A func-
tion f: I — J is called strongly (M, My )-convex
with modulus ¢ if

FMola,b50) < v (avo f(a) + (1= a0 f(0)

~ca(l - a)(éla) - 6(0)?)
(7
for all a,b € I and « € [0,1]. If the inequality (7)
is reversed, we call that f is strongly (Mg, My)-
concave with modulus c.

Note that if ¢ is increasing then f : I — J is
strongly (Mg, My )-convex with modulus ¢ if and
only if ¥ o f o ¢~ is strongly convex function with
modulus ¢ on ¢(I). If ¢ is decreasing then f : [ — J
is strongly (Mg, My )-convex with modulus ¢ iff
o fo@g ! is strongly concave with modulus ¢ on
o(1).

We say that a function f is strongly M, -convex
with modulus ¢ if f satisfies the inequality (7) for
¢(x) = x. For particular forms of ¢ and v, we obtain
the following concepts:

® strongly convex functions if we take ¢p(x) = x

and P(x) = x:
flaa+ (1 — a)b)

<af(a)+ (1 —a)f(b) —ca(l —a)(a—b)?
forall a,b el and a € [0,1].

® Strongly log-conver functions if we take
o(x) =z and Y(x) = Inwx:

In f(aa + (1 — a)b)
<alnf(a)+ (1 —a)ln f(b) — ca(l — a)(a — b)?
for all a,b € T and o € [0,1].

* Strongly exponentially convex functions'® if
we take ¢(x) = x and Y(x) = €”:

ef(aa+(1—a)b)
< aef@ 4 (1—a)ef® —ca(l —a)(a—b)?
for all a,b € T and o € [0,1].

® Strongly harmonic convex functions'® if we

take ¢(x) = 1/x and Y(x) = z:

! (#}La)b)

2
<af(a)+ (1 —a)f(b) —ca(l—a) (ac;)b)

for all a,b €I and a € [0,1].

* Strongly harmonic log-conver functions'! if
we take ¢p(x) =1/x and (x) =Inw:

Horii=a)

2
< f) (i - o) (“27)
for all a,b €T and o € [0,1].
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® Strongly p-convex functions if ¢(x) = xP and
Uw) = a:

Flaa + (1 — a)p]1/7)

<af(a)+ (1 —a)f(d) — ca(l —a)(a? — bP)?

for all a,b € I and o € [0, 1].

® Strongly geometrically convex functions if we
take ¢(x) =lnx and Y(z) =nwx:

F(@@b=) < (@) £ ()Y —ca(1—a) In (%)

Jor all a,b € I and o € [0,1].
Lemma 3. ¢

1. A function f : I — J is strongly convex
with modulus ¢ if and only if the function
g(x) = f(z) — ca? is convex.

2. A function f : I — J is strongly midconvex
with modulus ¢ if and only if g(x) = f(x) —ca?
s midconvez.

Due to Lemma 3 and Jensen’s inequality !7, one
can verify that if f is continuous on I and strongly
midconvex with modulus ¢ then f is a strongly con-
vex function with modulus ¢ on I.

Lemma 4. A function f is strongly (Mg, My)-
convex with modulus ¢ if and only if g(x) := ¥ o
fod Y(x) — ca? is strongly convex on ¢(I).

Proof. We have f is strongly (Mg, My)-convex
with modulus ¢ if and only if ¢y o f o ¢~ is strongly
convex with modulus ¢ on ¢(I). This achievement
together with Lemma 3 yield f : I — J is strongly

(Mg, My)-convex with modulus ¢ if and only if
g(z) ;=1 o fogp l(x) — ca® is convex on ¢(I). [

3. FEJER TYPE INEQUALITIES FOR
STRONGLY (Mg, M, )-CONVEX FUNCTIONS

Throughout this paper, we assume that f: I —
J is a strongly (Mg, My)-convex function with
modulus ¢ (¢ > 0); a,b € I, a < b; a € (0,1);
wi,ws : [0,1] = [0,00) are integrable functions and
satisfy the condition [ wy(t)dt > 0 for all s € (0,1].
and fsl wsy(t)dt > 0 for all s € [0,1). Denote

L(t) = Mg(a, My(a,b;a);t)

and

R(t) = My(b, My(a,b:a);t)
for ¢ € [0,1].
Theorem 5. Let F,G :[0,1] = R be two functions

defined as
f@)zwflcnwofoca>—cwocun%
+<1—axwofona>—4¢onun%)

https://doi.org/10.52111/qnjs.2022.16508

and
G(t) =tF(1)+ (1 —t)F(0).
Then,
(1) F and G are My-convez, increasing on [0,1]
and
F(0) =46(0)
F() <G(t), telo,1], (8)
F(1)=6(1).
(2) Fors e (0,1], let
R Jg o F(tyw: (t)dt
hie) =9 ( Jo wi (t)dt )
and
f(s) = Lol

Then, F o 31, Iy and G o By are increasing on
(0,1] and satisfy

lim Fop(s) = 5lir(r)l+ Zi(s) = lim Gopi(s) = G(0),

s—0t s—0t
FopBi(s) <Zi(s) <GoBi(s), s€(0,1. (9)
(3) Similarly, for s €[0,1), we define
1
To(s) = 1 J. o F(t)ywy(t)dt
2(s) = ( .fsl ws (t)dt

and
_ f: tws (t)dt

[Hwa(t)dt”

Then, F o B, Zy and G o Ba are increasing on
[0,1) and satisfy

Ba(s)

FofBas) <Iy(s) < Gofa(s), se€[0,1), (10)

lim Fofa(s) = lim Zy(s) = gl_ig{ GoBa(s) = G(1).

s—1— s—1—
Moreover, if wy = ws then Ty (1) = Z»(0).

In order to prove Theorem 5, we need to intro-
duce the following auxiliary result.

Lemma 6. ° Let P : [0,1] — R be increasing and
continuous.

(1) For s e (0,1], define
Jy P(tyws (t)dt
Jo wi(t)dt

Then, Py is increasing on (0,1] and

Pl(Q) =

lim P;(s) = P(0) < Pi(s) < P(s), s € (0,1].

s—0t
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(2) Similarly, for s € [0,1), define

fsl wa(t)dt

Then, P, is increasing on [0,1) and

P2(s)

P(s) < Py(s) < P(1) = l_1)r{17 Py(s), s €]0,1).

We are now in a position to provide the proof of
Theorem 5.

Proof of Theorem 5. Since 1) is strictly monotone,
we consider two possible cases of 1: strictly increas-
ing and strictly decreasing.

First, suppose that ¢ is strictly increasing on .J.
Since 1 is continuous on .J, the function ! is con-
tinuous and strictly increasing on ¢ (.J).

1. In order to prove that F is M,y-convex on
[0,1], it suffices to show that ) o F is convex
on [0, 1]. Indeed,

Vo F(t)
=a (o fod (A1) —c(A(1)?)
+(1—a) (o fod ™ (B(t) —c(B(1)?),

where
A(t) = té(a) + (1 — t)(ad(a) + (1 - a)aﬁ(é)l)%)
and
B(t) =tg(b) + (1 —t)(ad(a) + (1 — a)¢(b)).
(12)

By Lemma 4, ¢ o f o ¢~ '(x) — ca? is convex
on ¢([a,b]). Moreover, since A(t) and B(t) are
linear on [0, 1], the function 1) o F is convex on
[0,1]. The M -convexity of G on [0, 1] imme-
diately follows from the definition of G.

By simple computations, one can verify that

F(0) =6(0)
=1 (fd)of(qu(asb; @)) (13)
—clap(a) + (1 — 06)¢(b))2>
and
F(1)=6(1)

_ <CW o f(a) + (1 —a)po f(b) (14)

~c(ad?(a) + (1— a)¢2(b>)).

Now, due to the convexity of o fo ¢ 1(x) —

cx2, one gets

o fo T A®) — (A

< t(4 0 f(a) — e(d(a))?)
(1 )W o f(Mola, b))
— c(ad(a) + (1 - a)g(b))?)

and
Yo foo T (B(t) - c(B(t)?
<t(yo f(b) — ¢(¢(b))?)
+ (1 =t) (¥ o f(Mg(a,b;a))
— c(ag(a) + (1 —a)¢(b))?)
Thus,

- claota) + (1~ @)o(1)?)
— o).
Since 41 is increasing on $(J),
F)<G(), telo1],

the claims (8) hold.
Next, we prove that F is increasing. Suppose
that 0 < t < r < 1. Due to the strongly
(Mg, My)-convexity of f and aA(t) + (1 —
a)B(t) = ag(a) + (1 — a)d(b), one has
vo F(0)
=vofog H(ag(a)+ (1 —a)p(b)
—c(ad(a) + (1 - a)p(b))?
=yofog ! (aA(t) + (1 - a)B(1)
—c(aA(t) + (1 - a)B(1))®
Sa(vofoo (A1) —c(At)?)
+(L—a) (Yo foo ' (B(t) - c(B(t)))
=1 o F(t).

On the other hand, since v o F is convex,

YoF(r) —voF(t) - Yo F(t) — o F(0)
r—t - t—20

Thus,

Yo F(r) —woF(t) | $oF() —woF(0)
r—t = t—0 -

i.e. 1 o F is increasing on [0, 1]. Since ¢! is
increasing on t(J), F is increasing on [0, 1].
Since

PoG(t) = tlF(1) — F(0)] + F(0)
and

F(1) = F(0) =0,

one gets 1) o G is increasing on [0, 1] and then
G is increasing on [0, 1].

https://doi.org/10.52111/qnjs.2022.16508

Quy Nhon University Journal of Science, 2022, 16(5), 87-95 | 91



QUY NHON UNIVERSITY
JOURNAL OF

SCIENCE

2. Applying Lemma 6 where P = ¢ oF, the func-
tion ¢ o 7y is increasing on (0, 1] and

lim ) 0 Zy(s) = ¢ o F(0).
s—0t

Since 1~ is strictly increasing and it is con-
tinuous on ¥(.J), the function Z; is increasing
on (0,1] and
lim 7, (s) = ¢ o F(0).
s—0*

Also, due to Lemma 6, the function 3 is in-
creasing on (0, 1] and

lim B1(s) =0<pBi(s) <s, se€(0,1].

s—0t

Therfore, F o 81 and G o 51 are well-defined,
increasing on (0, 1] and

lim FofBi(s) = 1_i>%1+g o B1(s) = G(0).

s—0+
Next, we prove the inequalities in (9). Let us

fix s € (0,1]. Applying Jensen’s inequality 7 to
the convex function ¢ o F on the interval [0, s],

we obtain

Y Jo twi(t fO wy (t)dt
¢ }—< ) f wl( H)dt .
FoBi(s) <Ti(s).

f() ’U)l
Since F(t) < G(¢

It follows

), t €10,1], we have

Jo o F(t)wi(t) b Jo o G(t)wy(t)dt
Jo wilt )dt T Jwi(t)dt
=1 oGopi(s)

Since ¢! is increasing, one gets

Z1(s) < Go Bi(s).
3. Applying Lemma 6 with P = 1) o F, we have
that the function ) o Z, is increasing on [0, 1)
and

lim 1) o Zy(s) =

s—1-

o F(1).
Since 1! is strictly increasing and continuous
on ¢(J), o is increasing on [0, 1) and

lim Zy(s) = F(1).
s—1—
Due to Lemma 6, 3, is increasing [0, 1) and

lim Ba(s) =1> Ba(s) >s, se][0,1).
51—
Thus, F oy and Go s is well-defined, increas-
ing on [0,1) and

lil}lﬁ FoBas) = hl}{ GoBa(s) =G(1).

https://doi.org/10.52111/qnjs.2022.16508

Now, we prove the inequalities (10). Fixing
s € [0,1) and applying Jensen’s inequality’
to convex function ¥ o F on s, 1] we obtain

wof<f1tw2 ) L 2()dt
fs wa (t)dt fs ’11)2( )df

and hence

Fo /32(&) S Ig(é)

Since F(t) < G(t), t € [0,1], it implies that
Jivo F(t) f?l’ogt)wz()
I wa(t )dt T[St

=1 o0Go fBy(s).
Since ¢! is increasing, one has
T5(s) < G o fas).

Moreover, if w; = w,, due to the definitions
of Z; and Iy, one gets Z; (1) = Z5(0).

The proof is similar for the case that 1 is de-
creasing. O

Note that Theorem 5 is not only a consequence of
strong (Mg, My,)-convexity, but it is also a charac-
terization of strongly (Mg, My)-convex continuous
functions with modulus c.

Corollary 7. Let f : I — J be a continuous func-
tion. The following statements are equivalent:

(1) f is a strongly (Mg, My)-convex function
with modulus c.

(2) F is increasing on [0,1] for all a,b € I,a <b
and o = 1/2.

(3) I, is increasing on (0,1] for all a,b € I,a <
b,a=1/2 and w; = 1.

(4) For all a,b € I and a < b, we have

o f(My(a.b;a)) — c(ad(a) + (1 — a)é(0))*

b
: m / (Yo f(2) = cg?(2)) d(x).

(5) Iy is increasing on [0,1) for all a,b € I,a <
b,a=1/2 and wy = 1.

(6) For all a,b eI and a < b, we have

b
m/ (wof(-) ”¢2( ))dd’( )
<avo f(a) + (1 —a)vo f(b)
— c(ad?(a) + (1 — a)¢*(D)).

(7) G is increasing on [0,1] for all a,b € I,a <b
and o = 1/2.

In order to prove Corollary 7, we need the fol-
lowing lemma.
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Lemma 8 (° Theorem 6). Let I C R be an interval
and [ : I — R is a continuous function. Then, the
following statements are equivalent.

(1) f s strongly convex with modulus c.

(2) For allz,y € I,z <y, we have

(3) For all z,y € I,z <y, we have

y%x /xy Flt)dt < M — é(y - :I?)Q.

Proof of Corollary 7. Due to Theorem 5, the impli-
cations (1) = (2) = (3) = (4), (1) = (5) = (6) va
(1) = (7) hold. For the rest of proof, we prove the
implications (4) = (1), (6) = (1) and (7) = (1).
Without loss of generality, we assume that ¢ is in-
creasing. We need to prove that 1o fog~! is strongly
convex on ¢(I) provided that one of conditions (4),
(6) va (7) holds. Since ¢ is continuous and strictly
monotone on I, ¢! is continuous and strictly mono-
tone on ¢(I). Now, the continuity of ¢, f and ¢!
imply that o fod™! is continuous on ¢(I). Clearly,
(7) implies that 1y o fo¢~! is strongly midconvex on
&(I). Thus, 1o fog~! is strongly convex on ¢(7). Fi-
nally, due to Corollary 8, if one of conditions (4) and
(6) holds for the continuous function ¢ o f o ¢! on
&(I) then 1o fog~! is strongly convex on ¢(I). O

As a result of Theorem 5, one can derive new Fe-
jér type inequalities for strongly (Mg, My,)-convex
functions with modulus ¢ by different choices of w;
and wy. For examples, we take

wi(t) = (1 —aw)gjo L(t) +agjoR(t), tel0,1],

where g; : [a,b] — [0,00), for j = 1,2, is chosen such

that
l_agloc(t):lfagloR(t), telo,s) (15)
and
L oLt = “ogpoR(t), tels 1] (16)

Note that for @ = 1/2 and ¢(x) = =z, the assump-
tions (15) and (16) hold if g; and g9 are symmetric
about (a + b)/2.

Due to (15) and £(0) = R(0), one can verify that

/OS wy (t)dt = (1 — «) /OS g1 0 L(t)dt + a/;gl o R(t)dt

1 R(s)
= m/ﬁ(s) g1(w)de(z)

and

/Os 1 o F(t)wq (t)dt
~-a) [ @weore

o [ (o s o RO~ oo RWP) o1 Rt

t) = clp o L(1)]) g1 o L(E)dt

1 R(s)
:M/a) (60 f(2) = b (@) gr (a)d(a)

and hence

I (IR( O (o f(w) — cd?(x)) o1 (r)dq)(:n))
! .

S gu (w)dp(x)
Similarly, since (16), £(1) = a and R(1) =,

IQ(S)
o (f‘“ (0 S () = c¢(x)) ga()do ()
57 a2(@)dél@) + [y 92(@)do()

g @0 F(@) = cd*(2)) g (T)dg/)(’y))
fﬁ(s) (]2(7)(1(/) +j7€( )(]2 L)l (7;) .

Together with Theorem 5, we obtain the following
result.

Corollary 9. Let g1,g2 : [a,b] — [0,00) be inte-
grable functions, where fob g1 0 L(t)dt > 0 for all

s € (0,1] ana’j g2 o R(t)dt > 0 for all s € [0,1)
and satisfy (15), (16). Then,

(i) For all s € (0,1], we have
(wo S Mofabie) ~ cladla) + (1 - a)o))
<F (fos tgy o l:(t)dt)

fos g1 0 L(t)dt

gt [ 1 (0 f(6) = @) ar (@) o)
- JEW gy (@)do(z)

g <f(f tg1 o L(t)dt)

Jo 910 L(t)dt
<yl (aw o fla) + (1 — a)bo f(b)
~ fod(a) + (1 - a)&(b)))

(17)

https://doi.org/10.52111/qnjs.2022.16508
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(ii) For all s € [0,1), we have
y! (w o F(Mo(a,bia)) — clad(a) + (1 - a)<;5(b))2)
]-"(fltfhoﬁ( )d )
f go o L(t)dt
oy < Y (¥ 0 f(@) ~ et (@) ga(x)dp(x)
JEO ga@ydo(a) + ) g2(x)do(z)

Jpio) (o f() = () g2<a:>d<z><x))
JE ga(@)do@) + [, 92(2)d()

(f tgo oc<t>dt>

g g8 v 7

[l g2 o Ltyat

<yt (d o f(a) + (1 - a)bo f(b)
— (((yqb (a)+ (1 =)o (b)))

(18)

Remark 10. Corollary 9 actually generalizes some
Hermite-Hadamard type inequalities that was re-
cently established for strongly convex functions and
generalized ones. We can list as below.

1. For @ =1/2 and ¢(z) = ¢(x) = x, due to (17)
we obtain an inequality that is sharper than
Fejér (5) type inequality establised by Azocar
et al.!® Theorem 5 for strongly convex func-
tions.

2. Let a = 1/2, g1 = 1 and 9(x) = é(x) =
Then, the inequality (17) implies

f<a—2i-b) +é(b—a)2

f (5@%—36) T f (3a-§—56) 13¢ )
2 +@(b—(l,)

IN

. 3atb

2 1 c
< N2
<3 / . f(z)dz + 16(b a)

FEF) () | e >
< 1 3 1 +E(b—a)
<
1 [f(a)+ f(b) a+b c
<3| " ()] e

IN

fla)+ f(b) ¢
Ty g(b— a)?,

where f : [a,b] — R is strongly convex with
modulus ¢. This is a refinement of inequality
(4).

3. Let a=1/2, g1 =1 and ¢(x) = 1/z,¢(z) = x.
Then, (17) reduces to the following inequality.'!

https://doi.org/10.52111/qnjs.2022.16508

r 2ab +£ b—a\?
“\a+b 12 ab
- f(sfi%b) +f<3«§fj’»b) +£ (b—a>2

- 2 192 ab
<(3a+b a+ 3b) / L& b—a\’
- 8(b—a) sapp a? 16 ab
- f(azfgb) +f(3a+b> +£ b—a)?
- 2 48 ab

ab f(x)
“b—a $2

< % (f <fibb) + f(a);f(b)> - (b;ba)2
_I@) 4 J0) e (b_a>2’

2 6 ab

The above inequality is a refinement of the
inequality in!! that was established by Noor
et al. for strongly harmonic convex functions
with modulus c.

4. Due to (17), we obtain a refinement of
Hermite-Hadamard inequality for strongly
log-convex functions!? if a = %, g1 = 1 and

o(z) =z, ¢(z) =Ina:

exp (ln f ( @ b) + T(;(b — (1,)2)

Inf (>24%) £ Inf (322) 130 )

22C
2 +1p 0

gexp<b2 /54 lnf(:v)dx—i-l(%(b—a)Q)

3a+b

a
g +b a+3b
In f (24 );lnf( . )+468(ba)2)

<1/2exp (lnf <“+b) + %(b—af)

+1/2exp (lnf(u) —zl—lnf(b) B (g(b 3 a)2)
conp (LI 2, )

4. CONCLUSIONS

In the paper, we studied a class of generalized
convex functions, which are defined according to a
pair of quasi-arithmetic means, called (Mg, My )-
convex functions, and derived various Fejér type in-
cqualities. These not merely provide a natural and
intrinsic characterization of the (Mg, My )-convex
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functions, but actually offer generalizations and re-

finements of some Hermite-Hadamard and Fejér

type inequalities obtained in earlier studies for dif-

ferent kinds of strong convexity.
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