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TOM TAT

Trong bai bao nay, chiing t6i xem xét mot 16p ham 16i manh mé rong lién quan dén mot cap tia trung
binh s6 hoc, dude goi 1a ham (Mg, M,,)-16i manh tit d6 thiét 1ap mot sé bat dang thite kidu Fejér cho 16p ham
16i manh nay. Céc bat ding thic mai nay 1a sy mé rong thuc su ciia cac bat ding thitc Hermite-Hadamard
va bat déng thitc Fejér duge thiét lap gan day doéi véi ham 16i manh va mot sé6 dang mdé rong ciia 16p ham

161 manh. Hon nita, céc bt dang thifc méi con dac trung cho 16p ham (Mg, My)-16i manh.

T khéa: Ham (Mg, My)-16i manh, tua trung binh sé hoc, ham 164, bat ding thic Hermite-Hadamard, bat
ddng thic Fejér.
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ABSTRACT

In this paper, we propose and study a class of generalized convex functions, which are defined

according to a pair of quasi-arithmetic means and called (Mg, M, )-convex functions, and establish various

Fejér type inequalities for such a function class. These inequalities not merely provide a natural and intrinsic

characterization of the (Mg, My )-convex functions, but actually offer a generalization and refinement of

some Hermite-Hadamard and Fejér type inequalities obtained in earlier studies for different kinds of strong

convexity.

Keywords: Strongly (Mg, My )-conves functions, quasi-arithmetic mean, convexity, Hermite-Hadamard

inequality, Fejér inequality.

1. INTRODUCTION

In the field of mathematical inequalities, the well-
known Hermite-Hadamard inequality for convex
functions was first discovered by Hermite! in 1883
and independently discovered 10 years later by
Hadamard.? This inequality says that if f : [a,b] —
R is a convex function then

A weighted generalization of Hermite-Hadamard in-
equality was developed by Fejér:® If f : [a,b] — R is
a convex function, g : [a,b] — [0, 00) is an integrable
function with f: g(x)dz > 0 and it is symmetric to

atb j.e. g(z)=gla+b—x) for all = € [a,b], then

a+b\ _ [ f@)g(x)de _ f(a)+ f(b)
f( 2 )S f:g(x)dx : 2

Since then, the inequalities (1) and (2) have been

)

generalized, extended and improved in various ways
and found interesting applications to convex analy-
sis, optimization theory and nonlinear analysis. One
of such ways is to establish new inequalities for
various generalized convex functions (see e.g.,7).
Among them, an important subclass of convex func-
tions in the optimization theory is strongly convex
functions. This class was developed by Polyak® in
1966 for dealing with some related issues arisen from

optimization theory.
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Let ¢ be a positive number. A function f :
[a,b] — R is called strongly convex with modulus
c if

ftz+(1=t)y) < tf(@)+(1—t)f(y)—ct(1—t)(z—y)?

for all z,y € [a,b]. One says that f is strongly mid-
convex with modulus c¢ if

2 2 4 )

; (xﬂ/) <@+ 1) Gl
for all z,y € [a,b].

In 2010, Merentes and Nikodem? established a
generalized version of Hermite-Hadamard inequal-
ity for strongly convex functions as follows: Let
f i [a,b] = R be a strongly convex function with
modulus c. Then, the following inequality holds

() oot 1o
SVIOES 0N

I
N
o

(4)

In 2012, Azocar!'® et al. proposed a Fejér type
inequality for strongly convex functions: Let f :
[a,b] — R be a strongly convex function with modu-
lus cand g : [a,b] — [0, 00) be an integrable function
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with fab g(z)dz = 1 and symmetric to %F2. Then,

f(a;_b> +c /abeg(x)dar— (a;—b)2
b

s[;ﬂmguwx (5)
I

a (12 2 b

< —c
In recent years, some generalizations of inequal-

2

ity (5) have been established for strongly log-
convex functions and strongly harmonic convex
functions. 2 Motivated by the achievements, we
continue the research direction. Our contributions
in this paper are that we first deeply investigate
the class of generalized strongly convex functions re-
garding to a pair of quasi-arithmetic means and then
derive some new Fejér-type inequalities. The derived
inequalities are not only characterizations for gen-
eralized strongly convex continuous functions, but
they also generalize inequalities that were recently
derived in the papers. 112

The rest of this paper is organized as follows. In
Section 2, we will introduce (Mg, M, )-convex func-
tions, strongly (Mg, My )-convex functions with
positive modulus and refer related particular cases.
The main results of this paper will be presented in
Section 3. Finally, the paper closes with the conclu-
sions in Section 4.

2. STRONGLY (M, My) - CONVEX FUNC-
TIONS

Let I and J be the intervals of real num-
bers. Let ¢ I — R and v J — R be
continuous and strictly monotone functions. Using
a pair of quasi-arithmetic means M, and My,
with Mg(a,b;a) = ¢~ (ag(a) + (1 — a)¢(b)) Au-
mann'® proposed the concept of (Mg, M )-convex

functions that is stated as follows.
Definition 1. ' A function f : I — .J is said to be
(Mg, My )-convex if

fMg(a, b)) < My(f(a), f(b);a)  (6)
for all a,b € I and « € [0, 1].

In the case that f fulfills the inequality (6) with
¢(x) = x, [ is called My -convex. If f satisfies the
inequality (6) with ¢(z) = 2 and ¢(z) = =z, then
the (Mg, My, )-convexity of f reduces to the usual
convexity in the literature of convex analysis.

For a pair of quasi-arithmetic means Mg and
My, we define a class of generalized strongly con-
vex functions as follows.

Definition 2. Let ¢ be a positive number. A func-
tion f: I — J is called strongly (Mg, My )-convex
with modulus ¢ if

FMola,bia) < v (avo f(a@) + (1= a)v o £(b)
—ca(l - a)(@(a) - 6(b))*)
(7

for all a,b € I and « € [0,1]. If the inequality (7
is reversed, we call that f is strongly (Mg, My)-
concave with modulus c.

~— ~—

Note that if 1 is increasing then f : I — J is
strongly (Mg, My )-convex with modulus ¢ if and
only if 1) o f o ¢! is strongly convex function with
modulus ¢ on ¢(I). If ¢ is decreasing then f: I — J
is strongly (M, My)-convex with modulus ¢ iff
o fog ! is strongly concave with modulus ¢ on

o(1).

We say that a function f is strongly M.,-convex
with modulus ¢ if f satisfies the inequality (7) for
¢(x) = x. For particular forms of ¢ and 1), we obtain
the following concepts:

* strongly convex functions if we take ¢(x) = x

and Y(x) = x:
flaa+(1—a)b)

< af(a)+ (1 - a)f(b) — call — a)(a — b)?
for all a,b eI and o € [0,1].

* Strongly log-convex functions™ if we take

¢(z) =z and Y(x) = Inz:
In f(aa + (1 — a)b)

<alnf(a)+ (1 —a)ln f(b) — ca(l — a)(a — b)?
for all a,b € I and o € [0, 1].

* Strongly exponentially convex functions!® if
we take ¢p(x) = x and P(x) = e*:
of (aat(1=a)b)
<aef@ 4 (1-a)ef® —ca(l —a)(a—b)?
for all a,b eI and a € [0,1].

* Strongly harmonic conver functions'! if we

take ¢(x) = 1/x and p(x) = x:
. ab
/ (aa +(1- a)b)

2
< afl@+ (1= a)f(o) - cat - ) (“2°)

for all a,b eI and o € [0,1].

* Strongly harmonic log-convex functions'® if
we take ¢p(x) = 1/x and Y(x) = Inz:

fﬁaig%zﬁ)

< H@r 00 —eatt -~ ()

for all a,b eI and o € [0,1].
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® Strongly p-convex functions if ¢(x) = xP and

P(x) = a:

f(laa? + (1 = a)p?)'/7)
< af(a) + (1 - a)f(b) — ca(l - a)(a” - b¥)?

for alla,be I and o € [0,1].

¢ Strongly geometrically convex functions if we
take ¢(x) =lnx and P(x) =lna:

f(a17)) < f(a)* (1)1~ —ca(1—a) In* ()

for all a,b €I and o € [0, 1].
Lemma 3. ¢

1. A function f : I — J is strongly convex
with modulus ¢ if and only if the function
g(z) = f(x) — ca? is convex.

2. A function f : I — J is strongly midconvex
with modulus c if and only if g(x) = f(z)—ca?
is midconvew.

Due to Lemma 3 and Jensen’s inequality !, one
can verify that if f is continuous on I and strongly
midconvex with modulus ¢ then f is a strongly con-
vex function with modulus ¢ on I.

Lemma 4. A function f is strongly (Mg, My)-
convez with modulus ¢ if and only if g(x) := 1 o
foo~Yx) — cx? is strongly convex on ¢(I).

Proof. We have f is strongly (Mg, M, )-convex
with modulus ¢ if and only if 1o f o ¢! is strongly
convex with modulus ¢ on ¢(I). This achievement
together with Lemma 3 yield f : I — J is strongly

(Mg, My)-convex with modulus ¢ if and only if
g(z) == o fop~l(x) — cx? is convex on ¢(I). O

3. FEJER TYPE INEQUALITIES FOR
STRONGLY (Mg, M,;)-CONVEX FUNCTIONS

Throughout this paper, we assume that f: [ —
J is a strongly (Mg, My)-convex function with
modulus ¢ (¢ > 0); a,b € I, a < b; a € (0,1);
wy,wsy : [0,1] — [0,00) are integrable functions and
satisfy the condition [ w1 (t)dt > 0 for all s € (0, 1].
and jsl wa(t)dt > 0 for all s € [0,1). Denote

L(t) = My(a, My(a,b; a);t)

and

R(t) = My (b, My(a, b;@);t)
for ¢t € 10, 1].

Theorem 5. Let F,G:[0,1] = R be two functions
defined as

fu>:w*1Quwofocu>chozun%

4%1*MWwfoR®4wWoR@P0

https://doi.org/10.52111/qnjs.2022.16508

and
g(t) = tF(1) + (1 = t)F(0).
Then,
(1) F and G are My-convez, increasing on [0, 1]
and
F(0) =6(0)
F(t) <G(t), telo,1], 8)
F(1)=g6(1).
(2) Fors e (0,1], let
) — ot [ o ¥ o F@ui(t)dt
ne=r ( Jo wi(t)dt )
and
o) = o ten(t)dt
Bl( ) fos wl(t)dt .

Then, F o 1, I1 and G o 1 are increasing on
(0,1] and satisfy

lim Fof(s) = Slir& Ii(s) = Slil(r}+ GofBi(s) = G(0),

s—0t
FoBi(s) <Ii(s) < GopBi(s), s€(0,1]. (9)

(3) Similarly, for s €[0,1), we define

To(s) =" <fs Yo F <f>'wz(t)dt>

[Hwa(t)dt
and

[ twa(tyat

M)t

Then, F o Ba, Iy and G o B2 are increasing on
[0,1) and satisfy

Ba(s)

FofBa(s) <Iy(s) < GopPa(s), se€][0,1), (10)

lim FopBsy(s) = lir{{ Io(s) = hI{lﬁ Gofa(s) = G(1).

s—1—
Moreover, if wy = wy then Z;(1) = Z5(0).

In order to prove Theorem 5, we need to intro-
duce the following auxiliary result.

Lemma 6. ° Let P : [0,1] — R be increasing and
continuous.

(1) For s e (0,1], define
Jo P(tywy(t)dt
Jo wi(t)dt

Then, Py is increasing on (0,1] and

P1 (8) =

lim Pi(s) = P(0) < Py(s) < P(s), s € (0,1].

s—0F
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(2) Similarly, for s € [0,1), define

[ P(tyws(t)dt
[Hwa(t)dt

Then, Py is increasing on [0,1) and

P(s) < Py(s) < P(1) = lim Py(s), s €[0,1).

s—1—

P2(S) =

We are now in a position to provide the proof of
Theorem 5.

Proof of Theorem 5. Since v is strictly monotone,
we consider two possible cases of 1): strictly increas-
ing and strictly decreasing.

First, suppose that v is strictly increasing on J.
Since ® is continuous on J, the function ¥~ is con-
tinuous and strictly increasing on ¢(J).

1. In order to prove that F is My-convex on
[0,1], it suffices to show that ¢) o F is convex
on [0, 1]. Indeed,

Yo F(t)
=a (Yo fod  (A)) - c(A(t)?)
+(1—a) (Yo fos ™ (B(t) —c(B(1)?),

where
A(t) = te(a) + (1 = t)(ag(a) + (1 — a)¢(b))
(11)
and
B(t) =tg(b) + (1 — t)(ad(a) + (1 — a)é(b)).
(12)

By Lemma 4, ¢ o f o ¢~ (x) — ca? is convex

on ¢([a,b]). Moreover, since A(t) and B(t) are
linear on [0, 1], the function ¢ o F is convex on
[0,1]. The M -convexity of G on [0, 1] imme-
diately follows from the definition of G.

By simple computations, one can verify that

F(0) =G(0)
:w—l(wof~(M¢(a,b;a)) (13)
 ced(a) + (1~ a)o(0)?)
and
F(1)=6(1)

o (avo f@+ - f0)
~ cfag?(a)+ (1 a>¢2<b>>).

Now, due to the convexity of 1o f o ¢~ (z) —

cz?, one gets

o fop (A1) — c(A(t)?

<t(wo fla) - c(¢(a))?)
+ (=)o f(My(a,b;a))
— c(ag(a) + (1 - a)p(b))?)

and

Yo fod ! (B(t)) — c(B(t))?
< t(eo f(b) — c(p(b)))
+ (1 =1)(¢ o f(Myl(a,b; )
— c(ag(a) + (1 — a)p(b))?).

Thus,

b0 F(t) <ty (aw o f(@)+ (1 - a)bo f(b)
- clad?(@) + (1~ 2)*0) )
=05 (Ve f(Mofabie)

- clasla) + (1 - a)o0))
=1o g(t)
Since 9~ is increasing on ¢(.J),
F(t) <6), te1,

the claims (8) hold.
Next, we prove that F is increasing. Suppose
that 0 < ¢t < r < 1. Due to the strongly
(Mg, My)-convexity of f and aA(t) + (1 —
a)B(t) = ag(a) + (1 — a)o(b), one has
¥ o F(0)
=10 fo¢ ! (ag(a) + (1 a)d(b)
— c(ag(a) + (1 - a)p(b))?
=10 fo¢™" (aA(t) + (1 - a)B(1))
—c(aA(t)) + (1 - )B(1)))”
<a(pofop H(A®R) — c(A1)?)
+(1—a)(¥ofop  (B(t) —c(B(t))?)
=1 o F(t).

On the other hand, since 1 o F is convex,

YoF(r) —voF(t) _ Yo F(t)—1voF(0)
r—t - t—0 '

Thus,

YoF(r) —yoF(t) _ Yo F(t)—1voF(0)
r—t - t—0

>0

i.e. ¢ o F is increasing on [0, 1]. Since ¢! is
increasing on ¢(.J), F is increasing on [0, 1].
Since
Yo G(t) = t[F(1) — F(0)] + F7(0)
and
F(1) = F(0) =0,

one gets ¥ o G is increasing on [0, 1] and then
G is increasing on [0, 1].

https://doi.org/10.52111/qnjs.2022.16508
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2. Applying Lemma 6 where P = 1o F, the func-
tion ¢ o Z; is increasing on (0, 1] and

HI?(()lJr P oZy(s) =1 o F(0).

Since ¢! is strictly increasing and it is con-
tinuous on v (J), the function Z; is increasing
on (0,1] and

lim Z;(s) =1 o F(0).

s—0t
Also, due to Lemma 6, the function (7 is in-
creasing on (0, 1] and

,h%lJr B1(s) =0<pBi(s) <s, se(0,1].

Therfore, F o 51 and G o 1 are well-defined,
increasing on (0, 1] and

lim Fo Bi(s) = Slirél+ G o p1(s) = G(0).

s—0+

Next, we prove the inequalities in (9). Let us
fix s € (0, 1]. Applying Jensen’s inequality 7 to
the convex function 1o F on the interval [0, s],
we obtain

Jo twr(t)dt\  [5 ¢o F(tyws (t)dt
WJT(fswl(t)dt)S BRI

It follows

FoBi1(s) <Iy(s).

Since F(t) < G(t), t € [0, 1], we have

Jo o F(t)wi(t)dt - Jo ¥ o G(t)wi(t)dt
Jo wi(t)dt - Jo wi(t)dt
=1 oGofB(s).
Since 1! is increasing, one gets
Ti(s) < GoBi(s).
3. Applying Lemma 6 with P = ¢ o F, we have

that the function ¢ o Z is increasing on [0, 1)
and

lim ¢ oZy(s) = o F(1).

s—1-
Since ¢! is strictly increasing and continuous
on ¢(J), Iy is increasing on [0,1) and

lim Zy(s) = F(1).

s—1-

Due to Lemma 6, 82 is increasing [0, 1) and

im Ba(s) =1> Ba(s) > s, s€(0,1).

s—1—

Thus, F oy and Go 3y is well-defined, increas-
ing on [0,1) and
lim Fo f(s) = lir? GoBa(s) =G(1).
s—1—

s—1—

https://doi.org/10.52111/qnjs.2022.16508

Now, we prove the inequalities (10). Fixing
s € [0,1) and applying Jensen’s inequality”
to convex function v o F on [s, 1], we obtain

boF (fslth(t)dt> < RvoF@ua
J, wa(t)dt [, wa(t)dt

and hence

Fo 52(8) < IQ(S).
Since F(t) < G(t), t € [0,1], it implies that

[H o F(tyws(t)dt _ [0 Gtyws(t)dt
[fwsyat = [lwa(t)dt

=1 o0Go fas)
Since 1! is increasing, one has
T5(s) < GoBa(s).

Moreover, if w; = ws, due to the definitions
of Z; and Zy, one gets Z; (1) = Z,(0).

The proof is similar for the case that v is de-
creasing. [

Note that Theorem 5 is not only a consequence of
strong (M, My,)-convexity, but it is also a charac-
terization of strongly (Mg, My )-convex continuous
functions with modulus c.

Corollary 7. Let f: 1 — J be a continuous func-
tion. The following statements are equivalent:

(1) f is a strongly (Mg, My)-convex function
with modulus c.

(2) F is increasing on [0,1] for all a,b € I,a < b
and o = 1/2.

(3) Iy is increasing on (0,1] for all a,b € I,a <
b,a=1/2 and wy = 1.
(4) For all a,b € I and a < b, we have
o f(My(a,b;a)) — c(ag(a) + (1 - a)d(b))*
1 b )
< m /a (w o f(x) —co (x)) do(z).

(5) Iy is increasing on [0,1) for all a,b € I,a <
b,a=1/2 and wy = 1.

(6) For all a,b € I and a < b, we have

b
ST [, (o 1@ = e @) doa)
<atpo fla)+ (1 —a)po f(b)
—c(ag?(a) + (1 — a)¢*(b)).

(7) G is increasing on [0,1] for all a,b € I,a <b
and o = 1/2.

In order to prove Corollary 7, we need the fol-
lowing lemma.

92 | Quy Nhon University Journal of Science, 2022, 16(5), 87-95
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Lemma 8 (? Theorem 6). Let I C R be an interval
and f : I — R is a continuous function. Then, the
following statements are equivalent.

(1) f is strongly convex with modulus c.

(2) For all z,y € I,z <y, we have

xr+y c
f( : )+E<y 2oL e

(3) For all z,y € I,z <y, we have

/ f dt< )+f() g(l/_x)2~

y—x

Proof of Corollary 7. Due to Theorem 5, the impli-
cations (1) = (2) = (3) = (4), (1) = (5) = (6) va
(1) = (7) hold. For the rest of proof, we prove the
implications (4) = (1), (6) = (1) and (7) = (1).
Without loss of generality, we assume that ¢ is in-
creasing. We need to prove that o fog™! is strongly
convex on ¢(I) provided that one of conditions (4),
(6) va (7) holds. Since ¢ is continuous and strictly
monotone on I, ¢~ is continuous and strictly mono-
tone on ¢(I). Now, the continuity of +, f and ¢!
imply that 1o fog~! is continuous on ¢(I). Clearly,
(7) implies that ¢ o fo¢~! is strongly midconvex on
@(I). Thus, 1o fop~! is strongly convex on ¢(1). Fi-
nally, due to Corollary 8, if one of conditions (4) and
(6) holds for the continuous function ¢ o f o ¢~* on
@(I) then ¥o fog~! is strongly convex on ¢(I). O

As a result of Theorem 5, one can derive new Fe-
jér type inequalities for strongly (Mg, My )-convex
functions with modulus ¢ by different choices of w;
and wsy. For examples, we take

w;(t) = (1 —a)gj o L(t) + ag; o R(t), te[0,1],

where g; : [a,b] — [0,00), for j = 1,2, is chosen such

that
1‘0‘gloc(t):1f‘aglon(t), te,s] (15)
and
1’agzoc(t):1fa9207z(t), te s 1]. (16)

Note that for « = 1/2 and ¢(z) = z, the assump-
tions (15) and (16) hold if g1 and go are symmetric
about (a + b)/2.

Due to (15) and £(0) = R(0), one can verify that

/Oswl(t)dt: (1704)/05glo£(t)dt+a./osgl o R(L)dt

1 R(s)
= 50— 9@ /qs) 91(z)d()

and
/0 "o F(tyw ()t
=(-a) [ (6o o L)~ oo L) g1 o L)
0
o [ e oR) oo ROP) g1 Ret)i

1 R(s)
~ o) —d(a) /,3( | (Vo f(x) = cd*(2)) g1 (w)de(x)

and hence
R(s)
o \Wo
Il(S) :1/)_1 (fﬁ( ) (

Similarly, since (16), £(1) = a and R(1) = b,

f(2) = cd?(x)) g1 (x)d ()
S5 g (2)do(a) '

IQ (8)

- ( JED (o fla) — e(@)) go(x)de(x)
- L(s) :
fa ( )d¢ +f7z(s) 92 )d(b(I)

N ffz(s) (Vo f(x) = c¢?(x)) g2 (r)dq&(m)).
JE© ga()de(@) + [, 92 (x)de(x)

Together with Theorem 5, we obtain the following
result.

Corollary 9. Let g1,9> : [a,b] — [0,00) be inte-
grable functions, where fos g1 0 L(t)dt > 0 for all

s € (0,1] and fsl g2 0o R(t)dt > 0 for all s € [0,1)
and satisfy (15), (16). Then,

(i) For all s € (0,1], we have
07t (o FMy(abia)) ~ clad(a) + (1 - 2)o0) )
- F (f(f tg1 o £(t)dt>

f; g1 0 L(t)dt

(JLJ) (o flx) - C¢2( ) gl<x>d¢<x>)
< o)
fg(s) 91(z)do(x)

IS tg1 o L(t)dt
<9 ( ﬁos g1 0 [:(t)dt)
<yt <% o f(a)+ (1 —a)po f(b)

~ cfad?(a) + (1 - a)¢2(b>>).
a7)
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(ii) For all s € 0,1), we have
07 (o F(Molaie)) = cladla) + (1 - o(0)?
F(f%moﬁmﬁ>
f g2 0 L(t)dt
L EY W f@) — (@) gala)d(x)
=9 £( ) b :
fa g2(z)do(z) + fn(s) g2(z)do(x)

Jr (o f(@) = e () 92(x)d¢(w)>
faL',(S) gg(ﬁ)dd)(m) + fg(s) gz(x)d¢(x)

Sg(@mwﬁwﬁ>

fs g2 0 L(t)dt

<yl (aw o f(a)+ (1— ) o f(b)
~ o (a) + (1 a>¢2<b>>).

(18)

Remark 10. Corollary 9 actually generalizes some
Hermite-Hadamard type inequalities that was re-
cently established for strongly convex functions and
generalized ones. We can list as below.

1. For @ = 1/2 and ¢(z) = ¢(z) = z, due to (17)
we obtain an inequality that is sharper than
Fejér (5) type inequality establised by Azocar
et al.19 Theorem 5 for strongly convex func-
tions.

2. Let @« = 1/2, g1 = 1 and ¢(x) = ¢(z) =
Then, the inequality (17) implies

(452) + G-

f (5(1;317) =+ f (3a§5b) 13¢ )

3a+tb

2 [TT
“b—a Jatsb
4

F) + 7 (45
2

b
< bia/a flz)dx

L G |

f(z)dx + 16(b—a)

C a2
+48(b a)

IN

=2 2 2
fla) + f(b)
2

where f : [a,b] — R is strongly convex with
modulus ¢. This is a refinement of inequality

(4).
3. Let a=1/2, g1 =1 and ¢(z) =1/z,¢(z) = =.
Then, (17) reduces to the following inequality.*!

S 7%(1770‘)27

https://doi.org/10.52111/qnjs.2022.16508

2ab c [(b—a
f<a+b>+ 2< ab )
- f(sSi%b)Jrf(%) +& (ba)2

- 2 192 ab

<(3a+b)(a+3b)/‘”&“ (1) 4 ¢ (b=a 2
- 8(b—a) sats 2 Y16\ ab
- f(;fﬁb) +f<3icfb) L (b—a)2

= 2 48
ab_ [ f@)

“b—a a2

L(1(28) 105 10) 5 (5
_f@ S0 e (b-a)’
<SR- ()

The above inequality is a refinement of the
inequality in'! that was established by Noor
et al. for strongly harmonic convex functions
with modulus c.

4. Due to (17), we obtain a refinement of
Hermite-Hadamard inequality for strongly
log-convex functions'? if @ = %, g1 = 1 and

o(z) = x,¢(r) =Ina:

exp <h1f (‘ib) + é(b - a)Z)

hlf 5a+36 + lIl f (3a+5b) 136
S ( + @(b — CL)2
se p(b2 /+ n f(2 )dx+16(b_“)2)

I GO ey )

<exp<b /mf() )

<1/2exp (mf( +b> + T(;(b—aﬁ)

+1/2exp (lnf(a)—?&—lnf(b) B %(b— a)2>
< exp (lnf(a)—2|—lnf(b) B (é(b—a)2> ‘

4. CONCLUSIONS

In the paper, we studied a class of generalized
convex functions, which are defined according to a
pair of quasi-arithmetic means, called (Mg, My)-
convex functions, and derived various Fejér type in-
equalities. These not merely provide a natural and
intrinsic characterization of the (Mg, My, )-convex
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functions, but actually offer generalizations and re- 9. N. Merentes, K. Nikodem. Remarks on strongly

finements of some Hermite-Hadamard and Fejér convex functions, Aequationes Math, 2010, 80,
type inequalities obtained in earlier studies for dif- 193-199.

ferent kinds of strong convexity.

gence of minimizing sequences in extremum
problems with restrictions, Soviet Mathematics
- Doklady, 1966, 7, 72-75.

10. A. Azocar, K. Nikodem, G. Roa. Fejér-type in-
equalities for strongly convex functions, Annales
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