
 

 
 

Tổng hợp vật liệu Co3O4 có nguồn gốc từ ZIF-67 và ứng 
dụng trong biến tính điện cực phát hiện acid ascorbic 

 

 

 

 

 

 

 

 

 

 

TÓM TẮT 

Trong nghiên cứu này, Co3O4 dạng tinh thể có cấu trúc xốp được tổng hợp bằng cách nung ZIF-67 trong môi 

trường không khí. Đặc trưng vật liệu Co3O4 được nghiên cứu bằng XRD, BET, SEM và EDS. Điện cực biến tính 

Co3O4-GPE dùng phát hiện điện hóa acid ascorbic thể hiện khoảng tuyến tính từ 2 µM đến 15 µM với giới hạn phát 

hiện là 0,48 µM. Kết quả độ thu hồi dao động từ 97,82% đến 99,5% đối với acid ascorbic xác định trong viên thuốc 

thương mại. 

Từ khoá: Co3O4, ZIF-67, acid ascorbic.  
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ABSTRACT 

The Co3O4 porous crystalline material was synthesized by calcining ZIF-67 sample in air. The Co3O4 

material was characterized by XRD, BET, SEM, and EDS. The electrode modified with Co3O4 was used to 

determine ascorbic acid. The proposed Co3O4-GPE electrode exhibited a linear range of 2 µM to 15 µM with a 

detection limit of 0.48 µM. Recovery results, ranging from 97.82% to 99.5%. for ascorbic acid in pharmaceutical 

tablet. 

Keywords: Co3O4, ZIF-67, ascorbic acid. 

1. INTRODUCTION  

Ascorbic acid (AA), the common name for 

Vitamin C, is a common multivitamin component 
and occurs naturally in various foods.It is 

important for a healthy diet and acts as an 

antioxidant. However, an overdose of vitamin C 
can lead to side effects such as stomach upset, 

headache, difficulty sleeping, and skin flushing.1,2 

Therefore, the rapid and accurate determination 

of AA has attracted scientific attention. 

Many analytical methods exist for determining 

ascorbic acid (AA), including techniques such as 

spectrofluorometry,3,4 chromatography,5,6 
spectrophotometry,7,8 capillary zone 

electrophoresis,9,10 and electrochemistry11,12. 

Among these, electrochemical methods 
employing modified electrodes have received 

considerable interest owing to their inherent 

simplicity, high sensitivity, and economic 

viability 

Cobalt oxide is a semiconductor with wide 

applications in many fields, including catalysis, 

electrode materials, gas sensing, and drug 
delivery.13-15 Numerous studies have explored the 

diverse applications of Co₃O₄; however, its 

potential use in electrode modification for 
pharmaceutical analysis remains relatively 

underexplored. To date, various porous 

nanostructures of Co₃O₄ have been synthesized, 

including spherical, tubular, rod-like, and flower-
like morphologies. Most synthesis methods 

utilize cobalt carbonate or hydroxide salts as 

precursors, often yielding materials with 

relatively low surface areas.16,17 

Recent, the application of metal-organic 

frameworks (MOFs; ZIFs) as precursors in the 

synthesis of inorganic materials is a growing area 
of research.18-25 Studies show that heat treatment 

of ZIF-67 can pyrolyze their ligands and lead to 

the formation of metal oxide nanoparticles. 
Therefore, the metal-centered organic framework 

material Co (ZIF-67) has appeared as a potential 

precursor to synthesize cobalt oxide (Co3O4) 

while still inheriting the structural characteristics 

of ZIF-67 and improving its catalytic activity.  

In this work, an electrode modified with the 

Co3O4 porous crystalline material derived from 
ZIF-67 is investigated. The obtained electrode 

was used for the electrochemical determination 

of  AA. 

2. EXPERIMENT 

2.1. Chemicals 

2-methylimidazol  (2-Hmim, 98%), ascorbic acid, 

graphite powder and parafin oil were received 
from Sigma Aldrich. Cobalt nitrate hexahydrate 

[Co(NO3)2·6H2O, 99%] was purchased from 

Macklin (China). Phosphoric acid (H3PO4, 85%), 
potassium dihydrogen phosphate (KH2PO4, 

99%), boric acid (H3BO3, 99%)  and potassium 

hydroxide (KOH)  were received from 

Guangdong-Guanghua Co. Ltd (China). 
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 Vitamin C tablet (Vitamin C, 500 mg AA, from 

Pharimexco Viet Nam) was purchased from a 
local pharmacy. All chemical reagents were used 

as received without any further purification. 

Britton-Robinson (B-R) buffer solutions were 
made using 0.5 M solutions of H3BO3, H3PO4, 

and CH3COOH. The pH of the B-R buffer was 

adjusted to the desired value with 1 M KOH or 

1M H3PO4 solutions. 

2.2. Apparatus 

All electrochemical analyses, including cyclic 

voltammetry and square wave voltammetry, were 
conducted using a DY2322 potentiostat, Digi-

Ivy, Inc. Austin. A standard three-electrode cell 

was employed, consisting of a working electrode 

(Co3O4-GPE or bare GPE, 0.07 cm²), a counter 
electrode (Pt wire), and a reference electrode 

(Ag/AgCl, KClsat). 

2.3 Synthesis of Co3O4 porous crystalline 

material from ZIF-67 

The synthesis of ZIF-67 was conducted 

according to a previously established  method26.  

1.455 g of Co(NO3)2⋅6H2O was dissolved in 50 

mL of ethanol, and 1.64 g of 2-methylimidazole 

(Hmim) was dissolved in 50mL of ethanol, 

resulting in a Co2+: Hmim molar ratio of 1 : 4. The 
Hmim solution was slowly added to   Co(NO3)2 

solution under continuous stirring for 30 minutes 

at room temperature. The obtained mixture was 
allowed to stand at room temperature for 6 hours 

without stirring, leading to the formation of a 

colloidal dispersion. The solid product was 

collected by centrifugation (4000 rpm, 30 
minnutes), washed three times with ethanol, and 

dried at 80 oC, 12 hours.  

Co3O4 was obtained by calcining ZIF-67 in air at 

a heating rate of 1 °C·min−1. 

2.4. Preparation of Co3O4-GPE modified 

electrode 

To prepare the Co3O4-GPE modified electrode, 

40 mg of graphite powder and 5 mg of Co3O4 

powder were thoroughly mixed with 10 μL of 

paraffin oil. The resulting paste was then packed 
into a Teflon holder, and its surface was 

smoothed using paper. To renew the electrode 

surface, the outer 2 mm of paste was removed 

and replaced with freshly prepared paste 

2.5. Characterization of the Co3O4 porous 

crystalline material 

A Bruker-Axs D8 diffractometer (40 kV, 40 mA) 

was used for powder XRD analysis. Textural 

properties were determined from nitrogen 

adsorption-desorption isotherms at -196 °C with 

a Micromeritics Gemini VII 2390 V1.02. Sample 
morphology was examined by scanning electron 

microscopy (JEOL JSM-6700F, 15 kV, 10 mA), 

and elemental composition was analyzed using 

EDS with a JSM-5700 LV. 

3. RESULTS AND DISCUSSION 

3.1. Characterization of the synthesized Co3O4 

material 

The XRD diffraction pattern of Co3O4 sample are 

shown in Fig. 1. X-ray diffraction pattern 

exhibited reflections at 2θ values of 
approximately 31.5°, 36.8°, 38.0°, 44.6°, 55.8°, 

59.4°, 65.3° and 77.5°, corresponding to the 

(220), (311), (222), (400), (422), (511), (440) and 

(533) crystalline planes of the Co3O4 cubic 

structure (JCPDS No. 04-043-1003)25. 
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Figure 1. XRD pattern of the Co3O4 porous crystalline 

material. 

Nitrogen adsorption-desorption isotherms were 
employed to characterize the specific surface area 

and pore morphology of the Co3O4 sample. As 

depicted in Figure 2, the sample presented a Type 

IV isotherm, accompanied by an H3 hysteresis 
loop, suggesting a mesoporous structure. The 

BET surface area was determined to be 30.43 

m²/g, and the pore size distribution was at 3 nm. 

 

 

Figure 2. Nitrogen adsorption−desorption isotherms 

(A) and pore size distribution (B) of the Co3O4 porous 

crystalline material. 



 

 

Figure 3. SEM image of the Co3O4 porous crystalline 

material, Inset: SEM image of ZIF-67 material. 

SEM images of Co3O4 (Figure 3) revealed that 
the calcined particles retained a cubic 

morphology, consistent with the original ZIF-67 

crystal template, characterized by an internal 

hollow structure and a surface exhibiting 
porosity. However, thermal treatment resulted in 

the observation of some collapsed hollow 

structures. 

 

Figure 4. EDS spectra of the Co3O4 porous crystalline 

material. 

EDS analysis was conducted on the Co3O4 
sample (Figure 4). Cobalt (Co) and oxygen (O) 

were confirmed to be present on the sample's 

surface based on the results. Elemental analysis 
of the Co3O4 yielded 41.62% cobalt and 58.38% 

oxygen. 

A comprehensive morpho-structural analysis of 

the Co3O4 material, utilizing results of XRD, 
SEM, EDS and BET, validated the successful 

synthesis of the Co3O4 porous crystalline 

material. 

3.2. Electrochemical characterization 

The electrochemical behavior of ascorbic acid 

(AA) was investigated using cyclic voltammetry 

(CV) and square wave voltammetry (SWV).  

 

Figure 5. Cyclic voltammograms (A) and square 

wave voltammograms (B) at GPE and Co3O4-GPE 

modified electrode in  0.2 M B-R buffer solution pH = 

4 containing of 10-4 M AA. 

A peak of AA at 0.08 V was observed in the CV 
and SWV curves obtained at both the bare GPE 

and the Co3O4-GPE, as illustrated in Figure 5. 

The Co3O4-GPE exhibited a lower peak potential 

and higher current. The oxidation peak current 
for AA at the Co3O4-GPE was approximately 

fifteen-fold greater than that observed at the bare 

GPE (Figure 5B) . This observed enhancement 
can be attributed to the greater surface area, 

porous morphology, and functional properties of 

the Co3O4 modification compared to the bare 

GPE. 

3.3. The effect of pH 

Square wave voltammetry (SWV) was employed 

to examine the impact of pH (within the range of 
3 to 6) on the voltammetric signals of AA.The 

pH of the electrolyte significantly affects the AA 

oxidation on the modified electrode. Figure 6 
displays the current responses recorded on the 

Co3O4-GPE under different pH conditions. 

A substantial increase in peak current was 
observed as tacc increased from 0 to 90 seconds, 

suggesting a corresponding enhancement of AA 

accumulation at the electrode surface. Beyond 90 

seconds, however, the peak current exhibited 
negligible increase, indicative of the electrode 

surface approaching adsorption equilibrium. 

Based on this observation, 90 seconds was 

selected as the optimal tacc. 

3.4. Accommulation 

The effect of accumulation time (tacc) on 

electrode response was investigated across a 
range of 0 to 150 seconds in a 0.2 M B-R buffer 

(pH 4) with 10-4 M AA (Figure 7). 

Accumulation

the peak current exhibited a negligible increase

5(B)



 

 

Figure 6. Square wave voltammograms of Co3O4-

GPE in 0.2 M B–R buffer (pH 4) containing 10−4 M 
AA (A); Influence of pH on Ip (B); Plot of Ep vs. pH 

(C). 

  

Figure 7. Dependence of Ip for AA in 0.2M B-R 

buffer solution pH 4 on accummulation time. 

3.5. Calibration 

The calibration curves for the AA detection with 

varying concentrations of AA was constructed by 
recording SWV in 0.2 M B-R  buffer solution at 

pH = 4 (Figure 8A).  Accordingly, a calibration 

curve was shown in Figure 8B.  The electrode 

exhibited a linear response for AA concentrations 

between 2 µM and 15 µM. 

 
 

Figure 8. Square wave voltammograms recorded at 

Co3O4-GPE increasing concentration of AA (A) and 

the corresponding calibration curve (B). 

The  resulting linear regression equation was: 

Ipa/μA = (-3.56335 ± 0.19192) + (1.19706 ± 

0.02218) [AA]/μM,    (R = 0.99726) 

For ascorbic acid (AA) detection, the Co3O4-GPE 

electrode exhibited a 0.48 µM detection limit and 
a sensitivity of 1.19, which are lower compared 

to some published results 1.52 µM at CL-

TiN/GCE,27 0.5 µM atNiCoO2/C,28 0.83 µM at 

AgNP-Psi29. 

4. REAL SAMPLE ANALYSIS 

The Co3O4-GPE electrode was used to analyze 

AA in Vitamin C tablets (Pharimexco Viet Nam) 
via the standard addition method to assess its 

applicability. Table 1 summarizes the results, 

confirming the electrode's effectiveness for AA 
determination in pharmaceuticals The measured 

mean AA concentration demonstrated agreement 

with the labeled value, and recovery rates ranged 

from 97.82% to 99.5%. 

Table 1. Results from the analysis of AA in a real 

Vitamin C tablet sample. 

Sample Added 

(µM) 

Found 

(µM) 

Recovery 

(%) 

RSD 

(%) 

Vitamin C  

(500 mg) 

3 2.96 ± 0.02 98.66 ± 

0.84 

0.85 

5. CONCLUSION 

The synthesis of Co3O4 porous crystalline 

material was performed using the ZIF-67 
material as a precursor. The resulting Co3O4 

possesses an internal hollow structure and a 

surface exhibiting porosity. The modified 

electrode developed with Co3O4 porous 
crystalline material offers high sensitivity and a 

low detection limit, making it promising for AA 

detection. It has also been successfully used to 
determine AA in real samples. 
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