
 

 
 
 

Thiết kế bộ quan sát 𝓗∞ theo phương pháp chia 

lưới cho hệ Lorenz 63 sử dụng mô hình dạng phi 

tuyến với tham số thay đổi  
 

 

TÓM TẮT 

Bài báo này đề xuất một phương pháp thiết kế bộ quan sát ℋ∞  bền vững cho hệ Lorenz 63 thông qua mô 

hình hóa lại theo dạng hệ phi tuyến với tham số thay đổi (NLPV). Bằng cách sử dụng phương pháp chia lưới 

theo không gian trạng thái và xây dựng các mô hình tuyến tính cục bộ, chúng tôi thiết lập một tập hợp các bất 

đẳng thức ma trận tuyến tính (LMI) để thiết kế bộ quan sát tại mỗi điểm lưới. Các ma trận bộ quan sát thu được 

sẽ được nội suy theo thời gian thực dựa trên trạng thái của bộ quan sát. Phương pháp này cho phép ước lượng 

chính xác các trạng thái của hệ trong cả hai trường hợp có nhiễu và không nhiễu. Kết quả mô phỏng và so sánh 

với bộ lọc Kalman mở rộng (EKF) xác nhận hiệu quả của phương pháp đề xuất thông qua các chỉ số đánh giá 

RMSE, NRMSE và hệ số tương quan 𝑅2  

Từ khóa: Hệ thống Lorenz, Bộ quan sát ℋ∞ , Hệ phi tuyến với tham số thay đổi (NLPV), Tiếp cận LMI, 

Phương pháp chia lưới 
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Gridding-Based 𝓗∞ Observer Design for the  

Lorenz 63 System Using an NLPV Reformulation 

 
 

ABSTRACT 

This paper presents a robust ℋ∞ observer design for the Lorenz 63 system based on a Nonlinear Parameter-

Varying (NLPV) reformulation. The nonlinear dynamics are approximated by gridding the state space and constructing 

local linear models. At each grid point, an observer gain is synthesized by solving a linear matrix inequality (LMI), with 

a common Lyapunov function ensuring stability across the operating range. The observer gain is updated online through 

barycentric interpolation based on the current estimated state. The approach enables real-time, robust state estimation in 

the presence of model nonlinearities and disturbances. Simulation results under both noisy and noise-free conditions 

and comparison with an Extended Kalman Filter (EKF) confirm the effectiveness of the proposed design. Quantitative 

evaluations using RMSE, NRMSE, and 𝑅2 demonstrate high estimation accuracy and robustness of the observer across 

a range of dynamic behaviors in the Lorenz 63 system. 

Keywords: Lorenz system, ℋ∞ observer, Nonlinear parameter-varying (NLPV), LMI approach, Gridding method.  

 
 

1. INTRODUCTION 

The Lorenz 63 system is a classical benchmark in 

nonlinear dynamics and chaos theory.1-3 Due to 

its strong nonlinearities and sensitivity to initial 

conditions, it provides an ideal platform for 

testing observer design techniques. Designing 

observers for such systems is challenging, 

especially when dealing with unknown inputs, 

external disturbances, and nonlinearities.4-8 

Traditional methods like the EKF often 

rely on linearization and statistical  assumptions,  

which may not provide robustness in chaotic 

regimes.9-10 

 An alternative is the 𝐻∞ observer framework, 

which focuses on worst-case disturbance 

attenuation.11-13 However, applying 𝐻∞ methods 

directly to nonlinear systems is difficult due to 

non-convexity.1  

To overcome this issue, the nonlinear 

system can be reformulated into a NLPV 

structure. The state space is discretized through 

gridding, and LMIs are employed to design 

observer gains at multiple linearization points.  

During online execution, the observer gain is 

interpolated in real-time based on the current 

estimated state using barycentric weights.14 

The proposed approach is validated 

using the Lorenz 63 system. Estimation 

performance is evaluated under both noisy 

and noise-free scenarios using standard 

quantitative metrics, including Root Mean 

Square Error (RMSE), Normalized RMSE 

(NRMSE), and the coefficient of 

determination ( 𝑅2). Results confirm the 

robustness and effectiveness of the observer 

design across a wide range of operating 

conditions. 

The main contributions of this paper are 

summarized as follows: 

• A deterministic NLPV reformulation of 

the stochastic Lorenz 63 system using 

expectation and Itô correction. 

• A grid-based ℋ∞ observer synthesis 

procedure using LMIs and a common 

Lyapunov function. 

• A real-time gain scheduling strategy using 

barycentric interpolation based on the observer 

state. 

• Simulation-based performance evaluation 

under noisy and noise-free conditions using 

RMSE, NRMSE, and 𝑅2  metrics. 



 

 The rest of this paper is organized as 

follows. Section II presents the NLPV 

modeling of the Lorenz system. Section III 

introduces the observer design approach via 

gridding and LMIs. Section IV provides 

numerical simulations and evaluation. Section 

V concludes the paper. 

2. MODELLING AND NLPV 

REFORMULATION 

This section presents a systematic reformulation of 

the original second-order Stochastic Differential 

Equation (SDE) into a deterministic NLPV model. 

This transformation facilitates tractable observer 

synthesis using convex optimization techniques, 

such as LMI. 

2.1. Original Stochastic Model 

The system under consideration is governed by a 

nonlinear SDE of the form9: 

𝑑𝑦𝑡 = 𝑓(𝑦𝑡)𝑑𝑡 + 𝑔(𝑦𝑡)𝑞
1
2(𝑡)𝑑𝛽𝑡 + 𝑀ℎ𝑦(𝑦𝑡)𝑅−1(𝑡) 

 [𝑑𝑧𝑡 + 𝑅1/2(𝑡)𝑑𝑢𝑡 − 2ℎ(𝑦𝑡)𝑑𝑡] (1) 

where: 

• 𝑦𝑡 ∈ ℝ𝑛 denotes the state vector, 

• 𝑓(⋅) is the nonlinear drift function, 

• 𝑔(⋅)𝑞1/2(𝑡) represents the process diffusion 

term, 

• ℎ(⋅) is a nonlinear measurement function, 

• 𝑀(𝑡) ∈ ℝ𝑛×𝑛 is the estimation covariance 

matrix, 

• 𝑅(𝑡) ∈ ℝ𝑝×𝑝 is the measurement noise 

covariance matrix, 

• 𝛽𝑡 , 𝑢𝑡 are standard Wiener processes. 

The last term on the right-hand side 

resembles the innovation update in ensemble-

based filters and includes both measurement 

information and gain-based corrections. 

2.2. Deterministic Approximation via 

Expectation 

To obtain a tractable deterministic model, the 

expectation of both sides of the SDE is 

considered. Since the expected values of 

Wiener process increments are zero, the 

stochastic terms vanish, yielding9,15: 

𝑑𝑦̂𝑡

𝑑𝑡
= 𝔼[𝑓(𝑦𝑡)] +

1

2
𝑀𝑓𝑦𝑦(𝑦𝑡)

+ 𝑀ℎ𝑦(𝑦𝑡)𝑅−1(𝑡) 

 [𝑧𝑡 − ℎ(𝑦̂𝑡) −
1

2
𝑀ℎ𝑦𝑦(𝑦𝑡)] (2) 

Here, 𝑦̂𝑡 = 𝔼[𝑦𝑡] denotes the expected 

state trajectory, and 𝑓𝑦𝑦, ℎ𝑦𝑦 denote the second-

order derivatives (Hessians) of 𝑓 and ℎ, 

respectively. The term involving 
1

2
𝑀𝑓𝑦𝑦 results 

from Itô's correction.16 

2.3. NLPV Model Formulation 

Let 𝑥(𝑡): = 𝑦̂𝑡 represent the observer's estimated 

state. Using first-order Taylor expansion, the 

nonlinear function 𝑓(𝑥) and ℎ(𝑥) are 

approximated by their Jacobians and higher-

order residual terms. The system dynamics can 

then be written as: 

𝑥̇(𝑡) = 𝐴(𝜌(𝑡))𝑥(𝑡) + 𝐵(𝜌(𝑡))𝑢(𝑡) + 𝑓rem (𝑥(𝑡)) (3) 

where: 

 

 

 

• 𝐴(𝜌) = ∇𝑓(𝑥) +
1

2
𝑀𝑓𝑦𝑦(𝑥) : linearized drift 

matrix with second-order correction, 

• 𝐵(𝜌) = 𝑀ℎ𝑦(𝑥)𝑅−1(𝑡): input matrix 

associated with measurement innovation, 

• 𝑓rem (𝑥(𝑡)): residual nonlinearities arising 

from approximation errors, 

• 𝜌(𝑡) ≔ {𝑥(𝑡), 𝑀(𝑡), 𝑅(𝑡)}: scheduling 

parameter vector. 

The remainder term 𝑓rem (𝑥(𝑡)):  captures the 

higher-order nonlinear dynamics not explicitly 

modeled in 𝐴(𝜌) or 𝐵(𝜌), and is assumed to satisfy 

a Lipschitz condition: 

‖𝑓rem (𝑥1) − 𝑓rem (𝑥2)‖ ≤ 𝐿𝑓‖𝑥1 − 𝑥2‖ ∀𝑥1, 𝑥2 (4) 

3. OBSERVER DESIGN VIA GRIDDING 

This section presents the design of a robust state 

observer for NLPV systems affected by both 

process disturbances and nonlinear uncertainties. 
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The observer is synthesized using gridding 

techniques and LMI conditions, ensuring an ℋ∞ 

performance level. 

3.1. System Model with Nonlinearity and 

Disturbance 

Consider the nonlinear system with parameter-

varying structure: 

𝑥̇(𝑡) = 𝐴(𝜌(𝑡))𝑥(𝑡) + 𝐵(𝜌(𝑡))𝑢(𝑡) +

𝐵𝑤(𝜌(𝑡))𝑤(𝑡) + 𝑓rem(𝑥(𝑡));
 

  𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑤(𝜌(𝑡))𝑤(𝑡) (5) 

where 𝑥(𝑡) ∈ ℝ𝑛 is the system state, 𝑢(𝑡) ∈ ℝ𝑚 is 

the control input, 𝑤(𝑡) ∈ ℝ𝑛𝑤 is the exogenous 

disturbance, and 𝑓rem (𝑥) is a nonlinear remainder 

function satisfying a Lipschitz condition in (4). 

3.2. Observer Structure 

The structural form of the observer is presented as 

follows:17 

  
𝑥̇̂(𝑡) = 𝐴(𝜌(𝑡))𝑥̂(𝑡) + 𝐵(𝜌(𝑡))𝑢(𝑡)

+𝑓rem (𝑥̂(𝑡)) + 𝐿(𝜌(𝑡))(𝑦(𝑡) − 𝑦̂(𝑡));
 (6) 

𝑦̂(𝑡) = 𝐶𝑥̂(𝑡) 

Let 𝑒(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡) denote the estimation  

error 

 

 

error. The error dynamics are derived as: 

𝑒̇(𝑡) = (𝐴(𝜌(𝑡)) − 𝐿(𝜌(𝑡))𝐶)𝑒(𝑡) + Δ𝑓(𝑡) 

  +(𝐵𝑤(𝜌(𝑡)) − 𝐿(𝜌(𝑡))𝐷𝑤(𝜌(𝑡)))𝑤(𝑡)  (7) 

where Δ𝑓(𝑡) = 𝑓rem (𝑥(𝑡)) − 𝑓rem (𝑥̂(𝑡)) and 

satisfies ‖Δ𝑓(𝑡)‖ ≤ 𝐿𝑓‖𝑒(𝑡)‖. 

3.3. LMI Condition for 𝓗∞ Observer 

To ensure robustness against 𝑤(𝑡) and 

nonlinear uncertainties, a quadratic Lyapunov 

function 𝑉(𝑒) = 𝑒⊤𝑃𝑒 is considered, with 𝑃 >

0. The following condition is imposed: 

 𝑉̇(𝑒) + 𝑧⊤𝑧 − 𝛾2𝑤⊤𝑤 ≤ 0, 𝑧 = 𝐶𝑒 + 𝐷𝑤𝑤  (8) 

Calculate the derivative: 

𝑉̇(𝑒) = 𝑒⊤(𝐴 − 𝐿𝐶)⊤𝑃𝑒 + 𝑒⊤𝑃(𝐴 − 𝐿𝐶)𝑒 

  + 2𝑒⊤𝑃(𝐵𝑤 − 𝐿𝐷𝑤)𝑤 + 2𝑒⊤𝑃Δ𝑓  (9) 

Use the inequality18,19: 

2𝑒⊤𝑃Δ𝑓 ≤ 𝜖𝑓‖Δ𝑓‖2 +
1

𝜖𝑓
𝑒⊤𝑃2𝑒 

               ≤ 𝜖𝑓𝐿𝑓
2‖𝑒‖2 +

1

𝜖𝑓
𝑒⊤𝑃2𝑒 (10) 

Combined: 

 𝑉̇(𝑒) ≤ 𝑒⊤((𝐴 − 𝐿𝐶)⊤𝑃 + 𝑃(𝐴 − 𝐿𝐶) + 𝜖𝑓𝐿𝑓
2𝐼)𝑒 

  + 2𝑒⊤𝑃(𝐵𝑤 − 𝐿𝐷𝑤)𝑤 +
1

𝜖𝑓
𝑒⊤𝑃2𝑒 (11) 

Create concatenation vector: 

  𝜉 = [
𝑒
𝑤

] , 𝑧 = 𝐶𝑒 + 𝐷𝑤𝑤 (12) 

Apply the matrix inequality: 

  𝑉̇ + 𝑧⊤𝑧 − 𝛾2𝑤⊤𝑤 ≤ 𝜉⊤Ψ𝜉 < 0 (13) 

 Return to Standard LMI Form at each gridding 

vertex: 

  𝑌 = −𝑃𝐿 ⇒ 𝐿 = −𝑃−1𝑌  (14) 

 𝐴𝑖 = 𝐴(𝜌𝑖), 𝐵𝑤,𝑖 = 𝐵𝑤(𝜌𝑖), 𝐷𝑤,𝑖 = 𝐷𝑤(𝜌𝑖)  (15) 

Applying standard manipulations and bounding 

Δ𝑓(𝑡) via the Lipschitz property, the inequality  

 

 

reduces to the feasibility of the following LMI at 

each grid point 𝜌𝑖: 

 [

Ξ𝑖 + 𝜖𝑓𝐿𝑓
⊤𝐿𝑓 Φ𝑖 𝐶⊤

Φ𝑖
⊤ −𝛾2𝐼 𝐷𝑤,𝑖

⊤

𝐶 𝐷𝑤,𝑖 −𝐼

] < 0 (16) 

with definitions: 

 Ξ𝑖 = 𝐴𝑖𝑃 + 𝑃𝐴𝑖
⊤ + 𝐶⊤𝑌𝑖

⊤ + 𝑌𝑖𝐶 (17) 

 Φ𝑖 = 𝑃𝐵𝑤,𝑖 + 𝑌𝑖𝐷𝑤,𝑖 (18) 

To ensure exponential convergence of the 

estimation error, a decay rate condition is 

embedded within the Lyapunov framework. 

Specifically, for a candidate Lyapunov function 

𝑉(𝑒) =𝑒⊤𝑃𝑒, where 𝑃 > 0, the derivative along the 

estimation error dynamics is required to satisfy: 

 𝑉̇(𝑒) ≤ −2𝛽𝑉(𝑒)  (19) 

This implies: 
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 𝑒⊤(𝐴𝑖
⊤𝑃+𝑃𝐴𝑖)𝑒 ≤ −2𝛽𝑒⊤𝑃𝑒 (20) 

which leads to the matrix inequality: 

 𝐴𝑖
⊤𝑃+𝑃𝐴𝑖 + 2𝛽𝑃 ≤ 0 (21) 

Here, the scalar β > 0 denotes a desired 

minimum decay rate of the estimation error 

dynamics, directly controlling the convergence 

speed of the observer. The term 2𝛽𝑃 is therefore 

incorporated into the LMI formulation to 

guarantee that the estimation error decays at an 

exponential rate of at least β. This ensures a 

desired performance level in transient response. 

Accordingly, the main LMI condition at 

each grid point 𝜌𝑖: includes this term as follows: 

𝐴𝑖𝑃 + 𝑃𝐴𝑖
⊤ + 𝐶⊤𝑌𝑖

⊤ + 𝑌𝑖𝐶 +  2𝛽𝑃 +

𝜖𝑓𝐿𝑓
⊤𝐿𝑓 < 0     (22) 

The inclusion of 2𝛽𝑃 acts analogously to 

pole placement in linear observer design, where 

2𝛽 controls the speed of the eigenvalues of the 

error dynamics. This approach enables the 

systematic shaping of observer convergence 

through convex optimization. And LMI in (16) is  

 
 

rewritten: 
 

 [

𝛯𝑖 +  2𝛽𝑃 + 𝜖𝑓𝐿𝑓
⊤𝐿𝑓 𝛷𝑖 𝐶⊤

𝛷𝑖
⊤ −𝛾2𝐼 𝐷𝑤,𝑖

⊤

𝐶 𝐷𝑤,𝑖 −𝐼

] < 0 (23) 

If feasible, the observer gains at the grid 

point 𝜌𝑖: is recovered as 𝐿𝑖 = −𝑃−1𝑌𝑖  

3.4. Gridding and Barycentric Interpolation 

Approach 

To effectively design an observer for nonlinear 

parameter-varying systems, the state-dependent 

matrices 𝐴(𝜌(𝑡)), 𝐵(𝜌(𝑡))and 𝐿(𝜌(𝑡)) must be 

approximated. Direct continuous-time synthesis 

is generally intractable due to infinite-

dimensional dependency on the scheduling 

parameter 𝜌(𝑡). Therefore, a gridding approach 

is adopted to discretize the state space. 

The state space X ⊂ 𝑥(𝑡) ∈ ℝ𝑛 is 

partitioned into a finite number of grid points 

{𝑥[𝑖]}1=1
𝑁 , where a local LMI observer synthesis 

is performed. At each grid point 𝑥[𝑖], an 

observer gain 𝐿[𝑖] is computed by solving the 

corresponding LMI condition. These gains are 

stored for online use. 

To enable smooth gain variation and avoid 

chattering between discrete observers, the gains 

are interpolated during runtime using barycentric 

weights. Let 𝑥̂(𝑡) denote the current observer 

state. The interpolated gain 𝐿(𝑥̂(𝑡)) is calculated 

as: 

   𝐿(𝑥̂(𝑡)) = ∑ 
𝑖(𝑥̂(𝑡)) 𝐿[𝑖]𝑁

𝑖=1 , (24) 

where 
𝑖
(⋅) are barycentric interpolation weights 

satisfying  ∑ 
𝑖(𝑥̂(𝑡)) 𝑁

𝑖=1 = 1, and 
𝑖

≥ 0. 

4. NUMERICAL SIMULATION   

This section validates the proposed gridding-

based ℋ∞ observer on the chaotic Lorenz 63 

system under both noisy and noise-free 

conditions. Performance is evaluated using 

standard error metrics. 

 

 

4.1. System Setup 

The Lorenz 63 system is a well-known nonlinear 

chaotic system governed by the following 

differential equations: 

  
𝑥̇(𝑡) = 𝐵𝑤𝑤(𝑡) + 𝑓(𝑥(𝑡)),

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑤 𝑤(𝑡)
 (25) 

where 𝑥(𝑡) = [𝑥1,  𝑥2, 𝑥3] ⊤ ∈ ℝ3is the system 

state, 𝑤(𝑡) ∈ ℝ3denotes external disturbances, and 

the measurement output is 𝑦(𝑡) ∈ ℝ .The matrices 

are defined as: 

  𝑦(𝑡) = 𝐶𝑥(𝑡), 𝐶 = [1 0 0]. (26) 

The nonlinear vector field 𝑓(𝑥) is given by1: 

  𝑓(𝑥(𝑡)) = [

𝜎(𝑥2 − 𝑥1)

𝑥1(𝜌 − 𝑥3) − 𝑥2

𝑥1𝑥2 − 𝛽𝑥3

]  (27)  

with parameters 𝜎 = 10, 𝜌 = 28, 𝛽 =
8

3
. To 

facilitate observer design using convex 

optimization tools, we reformulate the nonlinear 

system into an NLPV structure by approximating 

the dynamics through local linearizations. 
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The nonlinear vector field 𝑓(𝑥) is linearized 

around multiple grid points {𝑥(𝑖)}
𝑖=1

𝑁
 within a 

bounded region 𝒟 ⊂ ℝ3. At each point 𝑥(𝑖), the 

Jacobian matrix is computed as: 

  𝐴(𝑖): = 𝐽(𝑥(𝑖)) =
𝜕𝑓

𝜕𝑥
|

𝑥(𝑖)
 (28) 

This results in a set of locally linearized 

models: 

 𝑥̇(𝑡) ≈ 𝐴(𝑖)𝑥(𝑡) + 𝐵𝑤𝑤(𝑡) + 𝑓rem(𝑥) (29) 

where 𝑓rem (𝑥): = 𝑓(𝑥) − 𝐴(𝑖)𝑥 is the residual 

nonlinearity. Assuming that 𝑓(𝑥) is Lipschitz 

continuous over 𝒟, the residual satisfies: 

‖𝑓rem (𝑥) − 𝑓rem (𝑥̂)‖ ≤ 𝐿𝑓‖𝑥 − 𝑥̂‖, ∀𝑥, 𝑥̂ ∈ 𝒟 (30) 

for some constant 𝐿𝑓 > 0. To express the system in 

NLPV form, we introduce a parameter trajectory 

𝜌(𝑡) = 𝑥̂(𝑡), leading to: 

 

 

 

 
𝑥̇(𝑡) = 𝐴(𝜌(𝑡))𝑥(𝑡) + 𝐵𝑤𝑤(𝑡) + 𝑓rem (𝑥)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑤𝑤(𝑡)
 (31) 

The matrix 𝐴(𝜌(𝑡)) is obtained via online 

interpolation of {𝐴(𝑖)} using barycentric 

weights: 

  𝐴(𝜌(𝑡)) = ∑  𝑁
𝑖=1 

𝑖(𝜌(𝑡))𝐴(𝑖),  (32) 

 where ∑  𝑖 𝑖
= 1,

𝑖
≥ 0  

This interpolation ensures a smooth and 

accurate approximation of the nonlinear 

dynamics across the grid. 

4.2. Lipschitz Constant Estimation  

The observer gains are designed at grid points 

uniformly sampled over [−20, 20]3. At each 

grid point, the local Jacobian is computed and 

used to define 𝐴(𝜌𝑖).  

The nonlinear drift term 𝑓(𝑥) of the Lorenz 63 

system is defined in equation (27). To facilitate 

observer design with Lipschitz-type 

nonlinearities, the Lipschitz constant 𝐿𝑓 is 

required. A vector field 𝑓(𝑥) is said to be 

Lipschitz continuous over domain 𝒟 ⊂ ℝ𝑛 if 

there exists a scalar 𝐿𝑓 > 0 which satisfies the 

equation (30). 

A sufficient condition to obtain 𝐿𝑓 is to evaluate 

the spectral norm of the Jacobian matrix 𝐽(𝑥): 

  𝐿𝑓 = sup
𝑥∈𝒟

 ‖𝐽(𝑥)‖2 (33) 

where 𝐽(𝑥) =
𝜕𝑓(𝑥)

𝜕𝑥
  is the Jacobian matrix 

of the drift function. 

For the Lorenz system, the Jacobian is 

computed as: 

 𝐽(𝑥) = ∇𝑓(𝑥) = [

−𝜎 𝜎 0
𝜌 − 𝑥3 −1 −𝑥1

𝑥2 𝑥1 −𝛽
] (34) 

The spectral norm ‖𝐽(𝑥)‖2 is the largest 

singular value of 𝐽(𝑥), which can be numerically 

evaluated over a bounded region 𝒟. In this work,  

 

 

 

the domain is chosen as 𝒟 = [−20, 20]3, 

covering the typical range of Lorenz state 

trajectories. 

A grid-based scan of 𝐽(𝑥) across 𝒟 yields 

an upper bound: 𝐿𝑓 ≈ 56.6092 

Fig. 1 describes the distribution of ‖𝐽(𝑥)‖2 

over a bounded domain in (𝑥1, 𝑥2, 𝑥3). It is 

observed that the spectral norm varies 

significantly, reaching values above 𝐿𝑓 =

56.6092 in lower regions of the state space (i.e., 

𝑥3< 0), while staying below 25 in upper regions 

(i.e., 𝑥3 >10). This spatial variability reflects the 

strong local nonlinearity of the Lorenz system, 

which motivates the use of a gridding-based 

observer design. By selecting local Lipschitz 

bounds within each grid cell, the observer gain 

can be adapted more accurately to the system's 

local dynamics, avoiding conservatism associated 

with a global Lipschitz constant. 

This bound is used in the LMI formulation 

to handle the nonlinear remainder term using 

Lipschitz inequalities, ensuring robust estimation 

even in the presence of nonlinear uncertainties. 

Using CVX toolbox and semidefinite 

programming (SDP)20, a set of LMI conditions is 

solved to obtain observer gains {𝐿𝑖}. At runtime, 

the gain 𝐿(𝑥̂) is interpolated using barycentric 

weights based on proximity to the grid centers. 
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Figure 1.  A graph representation of the Jacobian 

‖𝐽(𝑥)‖2 in the state space. 

   

Specifically, for each grid point 𝑖 ∈{1, 

2,…, 4} of the NLPV system in equation (24), 

the LMI condition in equation (23) is solved to 

synthesize a robust ℋ∞ observer.  

The CVX toolbox in MATLAB is 

employed to solve the optimization problem 

and compute the observer gain matrices 𝐿𝑖  

corresponding to each value of the scheduling 

parameter ρ, using the system matrices defined 

in section 3.4. 

The optimization yields a disturbance 

attenuation level of 𝜸∞ =  0.0023. The 

resulting observer gain 𝐿(𝑥̂) of the four grid 

points of ρ are as follows: 

𝐿(𝑥̂)  = [𝟓𝟏𝟗. 𝟗𝟐𝟗𝟒; −𝟏𝟕. 𝟏𝟎𝟔𝟗;  𝟔. 𝟑𝟔𝟎𝟏]𝑇 

4.3. Simulation Scenarios and Discussion  

To evaluate and compare the performance of 

the proposed ℋ∞ observer and the EKF9, 

numerical simulations are carried out on the 

Lorenz 63 chaotic system. The initial state of 

the system is set as 𝑥(0) = [−5, −5, −5]𝑇, and 

both observers are initialized at the origin 

[0, 0, 0]𝑇. The EKF is implemented using a 

first-order prediction-correction structure, 

where the time-varying Jacobian matrix of the 

Lorenz system is used in the prediction step. 

The initial covariance matrix is selected as 𝑃0 = 

2 ⋅ 𝐼3 to ensure sufficient initial uncertainty for 

the EKF. In contrast, the ℋ∞ observer uses a 

gridding structure interpolated via barycentric 

weights over a predefined grid of the state 

space. 

To provide a comprehensive performance 

analysis, two sets of simulation conditions are 

examined: 

• Noise-Free Scenario: The system evolves 

without any disturbances to establish a baseline. 

Figure 2 illustrates the comparison between 

the actual states 𝑥1 to 𝑥3  and their corresponding 

estimated values 𝑥1 to 𝑥3. In the plots, the solid 

green line represents the true system states, the 

red dashed line indicates the estimates from the 

proposed ℋ∞ observer, while the blue dash-dot 

line corresponds to the estimates obtained using 

the EKF.  

 

 

 

Figure 2. Comparison of system states with noise-free 

It is evident from the Fig. 2 plots that both 

ℋ∞ observer and the EKF closely track the true 

system states. The estimation errors are 

negligible for all state variables, reflecting 

excellent accuracy in the absence of noise. 

Notably: 

In 𝑥1, both observers almost overlap with 

the ground truth across the entire time span, with 

only very slight divergence in highly dynamic 
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segments. The inset zoomed plots confirm sub-

millisecond response agreement. 

In 𝑥2, the estimations remain aligned even 

during sharp transient oscillations. This 

highlights the observers’ ability to capture rapid 

nonlinear dynamics. 

In 𝑥3, where chaotic oscillations dominate, 

both 𝑥ℋ∞
 and 𝑥𝐸𝐾𝐹  accurately replicate the 

system evolution.  

The detailed zoom-in windows emphasize 

that the grid-based ℋ∞ observer performs on 

par with EKF under ideal conditions, while 

offering the added benefit of robustness in the 

presence of modeling uncertainties, which is 

discussed further in the noisy scenarios. 

• Noisy Scenario: Both process and 

measurement noise are activated.  

The state dynamics are subjected to an 

additive zero-mean Gaussian process noise 

𝑤(𝑡) ∼ 𝒩(0, 𝑄) and measurement noise 

𝑣(𝑡) ∼ 𝒩(0, 𝑅), where the covariance matrices 

are chosen as follows: 

  𝑄 = 0.5 ⋅ 𝐼3, 𝑅 = 𝐼1 (35)   

The process noise 𝑤(𝑡) is generated at 

each time step as: 

 𝑤𝑘 = √𝑄 ⋅ 𝜔𝑘, 𝜔𝑘 ∼ 𝒩(0, 𝐼3) (36) 

while the measurement noise is: 

 𝑣𝑘 = √𝑅 ⋅ 𝜈𝑘 , 𝜈𝑘 ∼ 𝒩(0, 𝐼1) (37) 

Figure 3 compares the actual states 𝑥1 to 

𝑥3 and their corresponding estimated values 𝑥1 

to 𝑥3, in the presence of noise as described 

above. The figures demonstrate that both 

observers track the system well, but the 

performance diverges during fast transients and 

in regions of strong nonlinear coupling. 

During sharp state transitions (e.g., 𝑡 ≈ 5.2s 

and 𝑡 ≈ 17.7s), the EKF estimator shows 

noticeable deviations from the ground truth, 

especially in 𝑥1  and 𝑥2 (see zoomed-in insets). 

This is attributed to the EKF’s reliance on local 

linearization, which becomes inaccurate under 

high system curvature. 

The proposed ℋ∞  observer, designed via 

gridding and interpolation of locally optimized 

observer gains {𝐿𝑖}, exhibits uniform tracking 

accuracy even under noise. This robustness 

stems from its design via LMI constraints 

incorporating Lipschitz bounds, which explicitly 

account for nonlinear uncertainty in the 

estimation error dynamics. 

 

 

Figure 3. Comparison of system states with noise 

Tables 1–3 present the state estimation 

performance indices - including  Root Mean 

Square Error (RMSE), Normalized RMSE 

(NRMSE) and the Coefficient of Determination  

(𝑅2) - for both the EKF and the proposed 𝐻∞ 

observer, under noise-free and noisy conditions, 

respectively. 
 

• Root Mean Square Error (RMSE): 

RMSE𝑖 = √
1

𝑁
∑  𝑁

𝑘=1   (𝑥𝑖(𝑘) − 𝑥̂𝑖(𝑘))2 (38) 

• Normalized RMSE (NRMSE): 

NRMSE𝑖 =
RMSE𝑖

max(𝑥𝑖)−min(𝑥𝑖)
 (39) 

• Coefficient of Determination (R2) : 

 𝑅𝑖
2 = 1 −

∑  (𝑥𝑖−𝑥̂𝑖)2

∑  (𝑥𝑖−𝑥‾𝑖)2 (40) 
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Table 1. RMSE index of states 

RMSE With noise-free With Noise 

 𝐸𝐾𝐹           ℋ∞   𝐸𝐾𝐹          ℋ∞ 

𝑥1 0.04042    0.00197 0.25921    0.00313 

𝑥2 0.06177    0.15654 0.33442    0.16664 

𝑥3 0.07490    0.16884 0.27328    0.17989 

 

Table 2. NRMSE index of states 

N 

RMSE 

With noise-free With Noise 

  𝐸𝐾𝐹          ℋ∞   𝐸𝐾𝐹          ℋ∞ 

𝑥1 0.00114    5.62e-05 0.00757    9.14e-05 

𝑥2 0.00131    0.00336 0.00743    0.00370 

𝑥3 0.00197    0.00455 0.00679    0.00447 

 

Table 3. 𝑅2 index of states 

𝑅2 With noise-free With Noise 

  𝐸𝐾𝐹              ℋ∞   𝐸𝐾𝐹            ℋ∞ 

𝑥1 0.99996    1.00000 0.99896    0.99999  

𝑥2 0.99995    0.99968 0.99857    0.99964 

𝑥3 0.99991    0.99955  0.99872    0.99944  

The simulation results demonstrate a 

comprehensive comparison between the 

proposed ℋ∞ observer and the EKF under both 

noise-free and noisy conditions. As presented in 

Tables 1–3, the ℋ∞ 𝑇ℎ𝑒 observer exhibits 

superior robustness, especially in the presence 

of process and measurement noise. 

In the noise-free scenario, EKF achieves 

slightly better RMSE values for 𝑥2 and 𝑥3, 

while the ℋ∞ observer delivers the best 

accuracy for 𝑥1, achieving an RMSE of only 

0.00197 and a coefficient of determination 𝑅2 = 

1.0000. However, in the noisy case, the 

performance of EKF significantly degrades 

across all states. For instance, the RMSE for 𝑥1 

increases to 0.25921 under EKF, whereas the 

proposed observer maintains a remarkably low 

RMSE of 0.00313. 

 

 

 

 

 

The NRMSE analysis further supports 

these findings, with the ℋ∞ observer 

consistently achieves lower normalized errors 

under noisy conditions. Specifically, for 𝑥1, the 

NRMSE of the ℋ∞ observer remains as low as 

9.14×10−5, compared to 7.57×10−3 for EKF. 

In terms of the coefficient of determination, 

the ℋ∞ observer consistently attains higher 𝑅2 

values in both scenarios, indicating a better 

match between estimated and actual states. 

Notably, the observer preserves an 𝑅2 of over 

0.9999 for all states even in the presence of 

noise, whereas EKF drops to 0.9985 or lower. 

Overall, these results validate the robustness 

and estimation accuracy of the proposed 

ℋ∞ observer design. The gridding-based LMI 

synthesis, combined with barycentric 

interpolation of the observer gain, enables the 

observer to maintain high precision under strong 

nonlinearities and measurement uncertainties. In 

contrast, EKF performance is more sensitive to 

noise and model mismatch, highlighting the 

conservative yet effective design philosophy of 

the ℋ∞ approach. 

5. CONCLUSIONS 

This paper presented an ℋ∞ observer design for 

the Lorenz 63 chaotic system using a NLPV 

framework combined with a Lipschitz-based 

approach. By leveraging gridding techniques and 

convex optimization via semidefinite 

programming, the observer gains were 

synthesized at predefined grid points and 

interpolated in real time based on barycentric 

weights. 

Simulation results demonstrated that the 

proposed ℋ∞ observer provides superior 

estimation accuracy and robustness compared to 

the EKF, particularly under process noise 

conditions. Quantitative metrics such as RMSE, 

NRMSE, and 𝑅2 confirmed the consistent 

performance improvements of the proposed 

method. 

 

 



 

 

This framework offers a practical and 

scalable solution for state estimation in 

nonlinear systems with strong local dynamics. 

Future work will explore extensions to output-

feedback control, observer-based 

synchronization of chaotic systems, and 

application to more complex NLPV systems 

such as robotic manipulators or fluid dynamics. 
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